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ORDER-TWO CONTINUOUS HAUSDORFF 
IMAGES OF COMPACT ORDINALS 

BY 

GADI  MORAN 

ABSTRACT 

THEOREM. Let K be a Hausdorff space. The following conditions are equiva- 
lent: (a) K is homeomorphic to a compact scattered ordered space; (b) K is an 

order-two image of a compact ordinaL. 

§0. Introduction 

The theorem stated in the abstract appears as theorem 5 in [4], where it is 

shown that (a) implies (b). The purpose of this note is to establish it by showing 

that (b) implies (a). As a T2-image of a compact  scattered T~-space is again a 

compact  scattered T2-space ([5], lemma 1), we need the following theorem. 

THEOaEM 1. Let K be an order-two T2-image of a compact well ordered space 

W. Thel~ K is orderable. 

Let us spell-out this statement.  We call a function f : X--> Y an order-two 

function iff for every y @ Y there are at most two solutions in X to the equation 

f (x )  = y. A mapping means a continuous function. If X, Y are topological spaces 

and f is a mapping of X onto Y we call Y an image of X. If, in addition, Y is a 

T2-(Hausdorff) space we call Y a T2-image of X, and if there is an order-two 

mapping of X onto Y then Y is an order-two image ofX.  A topological space Y 

is orderable iff there is a linear ordering on Y that induces Y's  topology. 

None of the assumptions of Theorem 1 can be considerably weakened. In [4] it 

is shown that an order- three T2-image of a compact  well-ord~red space (CWOS) 

need not be orderable.  The most familiar nonorderable order-two-T2-image of a 

compact  ordered space is the circle (f(t)  = e 2~'' is an order-two mapping of the 

unit interval on the unit circle). The mentioned example in [4] is easily modified 

to show that even an order-two-T2-image of a scattered compact  ordered space 
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(SCOS) need not be orderable. Finally compactness cannot be dismissed, as 

there exist countable T,-spaces that are not orderable - -  for example Arens'  

space ([1], see, e.g. [3], p. 109) - -  and every such space is a one to one image of 

the (discrete) ordinal to. 

We outline the argument in §1, and give the detailed proof in subsequent 

sections. §3 contains a characterization of T2-order-two images of arbitrary 

compact T2-spaces, in terms of properties of their associated reflections (defined 

there). 

A study of the structure of perfect images of CWOSs is found in [6]. 

§1. Outline of proof - -  from bottom to roof 

Our notation follows [4] and otherwise [3]. In particular, order means always 

linear order;  m~ (MA) denotes the minimal (maximal) member of the ordered set 

A, whenever it exists. A * denotes the set A with its order reversed. If Ba is an 

ordered set for each a in the ordered set A, and B~ fq Ba, = O for a # a ' ,  then 

X A B, denotes the ordered set obtained from UaE A Ba by retaining the given 

order on each B~ and requiring Ba < Ba, if a < a ' .  A point a in A is called upper 
(lower) isolated iff it does not belong to the closure of {x E A : a  < x }  

({x E A : x < a}). a is semi-isolated if it is either upper or lower isolated. ,g, 

denotes the order-type of A. The order type of a well-ordered set is the ordinal 

order-isomorphic to it. A space will mean a topological space. An order  on a 

space K is a consistent order (with K's  topology) if it induces K ' s  topology. Thus, 

K is orderable iff there is a consistent order on K. Two orders on a set K are 

consistent if they induce the same topology. If K '  is an ordered space obtained 

from an ordered space K by replacing its order by a consistent order,  we call K '  

a reordering of K. 

Let q~ be a mapping of W onto K. We say that an order < on K respects q~ iff 

< is a consistent order  on K, and ~(w)  is semi-isolated whenever ~ -~(~(w))=  

{w}. A mapping ~0 of W is called respectable iff there is an order on ~o(W) that 

respects ~o. We say that W is respectable if every order-two mapping q~ of W onto 

a T2-space is respectable. Theorem 1 is a consequence of 

THEOREM 2. Every CWOS is respectable. 

Theorem 2 is proved by induction on the order type of the CWOS W. It is 

enough to consider CWOS of type to ~ • m + 1 (v an ordinal, m E to) as every 

CWOS W is homeomorphic  to a CWOS of this type ([2], lemma 3). Theorem 3 

carries the induction from to v + 1 to to v. m + 1 = (to v + 1). m : 
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THEOREM 3. Let K~ be a scattered compact T2-space, i = 0, 1, and let K be the 

topological sum of Ko and K~. I f  Ko and Ki are respectable, so is K. 

The proof is given in §4. 

COROLLARY. Let W~ be a scattered compact ordered space (SCOS) for i < m. I f  

W~ is respectable, i < m, so is W = E? W~. 

Theorem 2 follows from this corollary and 

THEOREM 4. Let W be a CWOS, r~ = to~+ 1. I f  every CWOS V with 

< to ~ + 1 is respectable, so is W. 

Our proof of Theorem 4 relies on two Lemmata,  whose proofs are given in §2. 

LEMMA 1. Let W be a CWOS, I~ '=to  ~+1,  let p=cf( to~)  and let q~ be a 

mapping of W onto a T2-space satisfying ~o-J(~p(Mw))={Mw}. Then there is a 

reordering W'  of W such that I7¢' = to~ + 1, and W' = (E°~ W,) + {Mw}, where W~ 

is closed in W' ,  and ~-I(~(W~))= We (a < p). 

LEMMA 2. Let W be a CWOS such that every CWOS V with Q < ff" is 

respectable. Let W = (E°~ We ) + {Mw }, where p is a limit ordinal, and We is closed 

in W. Let ~ be an order-two-mapping of W such that ~ -l(q, ( W,  )) = W~ for a < p 

(hence also ~o-l(q~(M~))= {Mw}). Then q~ is respectable. 

PROOF OF THEOREM 4. Let q~ be an order-two mapping of W onto a T2-space. 

We have to show that q~ is respectable. If ~-t(q~(M,))={M~} then q~ is 

respectable by Lemmata 1 and 2. If not, then for some w < M ,  we have 

tp-l(~o (M, )) = {w, M~} as ~ is an order-two mapping. Let Wo = [m~, w], Wj = 

(w,M~]. Then W = Wo+ W~, where Wo, Wl are CWOSs, and if 'o< I~,'. Let 

q~ = ~o [ IV,. Then ~ is an order-two mapping of W~ onto a T2-space, i = 0, 1. By 

hypothesis, ~o is respectable. Now ff'~ = to~+ 1 and ~ ( q ~ ( M ~ ) ) =  {M~} = 

{M,,}; hence, by the previous case ~o~ is also respectable. Hence, by the proof of 

Theorem 3 (§4), ~o is respectable. 

§2. Proof of the Lemmata (Milma'|a 'ad Lemata) 

Let K be an ordered set. A subset V of K is called convex subset or interval if 

a, b E V  and a < t < b  implies t E V ,  i.e., (a,b)C_V. For arbitrary UC_K, 

a, b ~ U, let a - b i i I  (a, b) C_ U. Then - is an equivalence relation on U, whose 

equivalence classes are called the convex components of U. If U is open (closed) 

then every convex component of U is open (closed). If K is compact and U is 
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clopen ( = closed and open), then by compactness U has finitely many convex 

components, each of which is a clopen interval in K. Thus we have 

PROPOSITION 2.0. Let K be a compact ordered space, and let U be a subset of 

K. Then U is clopen iff U is a finite union of disjointed clopen intervals of K. 

PROPOSITIOr~ 2.1. Let K be a compact ordered space, and let < be its order. 

Let p be an ordinal, and let A denote the set of nonzero limit ordinals not exceeding 

p. Let {Ks :0-<_ c~ _<--p} be a partition of K into nonempty closed subsets. Let 

ms = mK~, M~ = MK. Assume: 

(i) K~ is clopen in [ms,MK], and for ot~.A, K,  is clopen in K. 

(ii) Let a ~ A. Then for every 3' < a there is a ko < me such that (ko, m~ ) C_ 

Let K'  denote the set K ordered by the order relation < '  defined by the 

requirements : 

(1) <'lgo--<lgo 
(2) K '  = (E; K~ ) + K,. 

Then K'  is a reordering of K. 

PROOF. We need to show that the identity mapping of K onto K '  is a 

homeomorphism. It is one to one and onto, so since K is compact and K '  is 

Hausdorff, we only have to show continuity. Let k E K~, and let V' be a K'-  

open-interval containing k. We shall show that there is a K-open-interval V 

containing k such that V C V'. Let  U be the K-convex-component  of K~ 

containing k. By (i) and Proposition 2.0, U is a clopen interval of the K-closed 

interval Imp, M~] and by (1), (2) it is also a K'-closed interval, clopen in the 

K'-closed interval K~. Also, <'1 U = < I U by (1). We now distinguish two cases: 

Case 0. a ~ A. Then U is a K-open-interval and also a K'-open-interval.  

Let V = V' N U. Obviously, k E V. Since V' is also a K'-open-interval,  so is V. 

Thus V is a U-open-interval, hence a K-open-interval.  

Case 1. ~ CA. If m~ < k, let V = (U\{m~})N V', and repeat the previous 

argument (with U\{m~} for U) to show that V is a K-open  interval containing 

k. Assume k = m~. Let Vo = U n v ' .  Then k ~ Vo, and V0 is a U-open-initial- 

segment contained in V'. Now V' is an open K'-interval, m~ ~ V', and a E A, so 

there is by (2) a 3' < a such that U,=~o<~ Ks _C V'. Hence by (ii) there is a ko < m~ 

such that the K-open  interval (ko, me) is included in U~=o<,K~, hence in V'. 

Thus, V = (ko, me) 1.9 Vo is a K-open-interval containing me and included in V'. 

PROOF OF LEMMA 1. Let m = row, M = Mw, L = q~ (W), l = ~o (M). Then L is 

T2, compact and scattered, hence zero dimensional [7, p. 168]. Thus, its clopen 
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subsets form a base to the topology. Hence, whenever Lo C L is closed and 
l ~  Lo, there is a clopen L ' C  L such that LoC L'C_ L \{l}. We shall use this fact 

to obtain a partition {W~ : 0 =< a =< p} of W into closed sets satisfying (i) and (ii) 

of Proposition 2.1, and also q~-~(q~(W~))= W~. 

Let (a~)~<, be an increasing cofinal sequence in fro, M), and let A denote the 

set of nonzero limit ordinals not greater than p. We define W, so that setting 

m~, = m~., M~ = M~., V~ = U~<~ Wo, the following conditions hold: 

(a) W~ is a nonempty clopen subset of [m~, M], W~ is a nonempty clopen 

subset of W for a ~ A ,  and w ~ n w o = O f o r 0 _ - _ a < / 3 = < p .  
(b) [m, max(M,,, a,, )] C_ V,~+~C_[m,M,~+~], and M~ < M  (a < p ) .  

(c) V ~ = [ m , m , ) f o r  a ~ A .  

(d) ~-'(,p(W~))= Wo (0<-~ <-_p). 
(a) and (b) imply that W, = {M} and that {W, : 0 =< a -< p} is a partition of W 

into closed sets. (a) guarantees (i) of Proposition 2.1; (b) and (c) guarantee (ii) (if 

y < a  ~ A  then (M~,+~,m,,)C_ V~,\V~,+~= U ~ < ~  W~). 

We now turn to the inductive definition of W~,, V~. By definition, V0 = O. 

Assuming W~ defined for all/3 < a so that (a), (b), (c), (d) hold, we note that V~ 

is bounded in fro, M) (if a ~ A by (b); if a E A by a < P = cf(M)). Let y < p be 

smallest such that V, < a~. Since q~([m, a~]) is closed in L and does not contain l, 

we may choose L' to be a clopen subset of L satisfying q~([m, a~]) C L '  C_ L \{/}. 

Let V~+~ = q~-;(L') and let W~ = V~+;\ Ve. Since ~o-'(/)={M}, q~-~(L') is 

bounded in fro, M)whenever  L '  is a closed subset of L and l ~  L' .  Hence V~+; is 

a clopen subset of W, bounded in [m, M). The verification of (a), (b), (c), (d) is 

straightforward. 

It is left to show that if" = to" + 1. Now if"  is a CWOS, whose u'th derived set 

is nonempty, as W' is homeomorphic to W. Thus, to" + 1 =< i f"  ([2], lemma 1). 

On the other hand, it is easily verified by induction that every initial segment of 
W'\{M} has order-type smaller than to", whence i f " =  to" + 1. 

PROOF OF LEMMA 2. Let L = ~ (W), L~ = q~ (We), q~ = q~ I W~, me = mwo, 
M~ = Mw~ (c~ < p). Let l = ~ (Mw). Let A be the set of nonzero limit ordinals not 

greater than p. Since W~ is a CWOS and IV, < I~', W, is respectable for a < p, 

and so since ~ is an order-two mapping of W~ onto L~, L~ carries an order <~ 

that respects ~ .  By ~- ; (L , )  = W~, we have L~ n Lo = ~  for a / / 3 .  Thus, the 

ordering < on L defined by the requirements: 

(I) <ILo =<o ILo <p), 
(2) L = (m~L . )+ { t } ,  

respects q~, provided that it is a consistent ordering of L. Since ~ is a closed 
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function, it is a quotient mapping ([3], p. 83-85). Hence < is a consistent 

ordering of L iff q~ is continuous as a function from W into L with the order 

topology. This in turn holds iff for every transfinite sequence (a~)~<~ in W 

convergent to a ~ W, (~o(a~)),<, is convergent in the ordered space L to ~0(a). 

It follows that < is a consistent ordering of L iff for every a E A, q~(m~) is the 

<~-first-element of L~. Hence to complete the proof it is enough to prove 

CLAIM. There is an ordering <,  of L~ that respects q~,, such that q~ (m~) is the 

<~-first-element o[ L~. 

PROOF OF CLAIM. Notice first that whenever K is an ordered space with a 

maximal element and a minimal element, and k E K is semi-isolated, there is a 

reordering K '  of K where k is minimal, such that a point of K is semi-isolated in 

K iff it is semi-isolated in K'.  Indeed, if k is semi-isolated, then K = K0 + Kl 

where Ko has a maximal element (or is empty), K~ has a minimal element (or is 

empty) and k = M~  or k = m~,,. In the first case let K '  = K* + K~, and in the 

second let K '  = Kl + Ko. 

Let I, = q~(m~)=~0~ (m~). We conclude by showing that L~ has an ordering 

that respects q~ such that l, is semi-isolated. Consider two cases. 

Case O. [~o-1(1~)1 = 1. As m~ E ~o-l(l~), we have in this case q~-~(l~)={m~}. 

Since m~ is isolated in W,, and since ~o~ maps for each ordinal v the v' th 

derivative W~ "~ of W, onto L~ ") ([5], lemma 1), l~ is isolated in L, .  

Case 1. [q~-l(/~)l> 1. Since ~o is order two, 1~o-~(/~)l=2 and so for some 

w # m ~ ,  ~o-~(l~)={rn~,w}. Since q~-~(L~)= W~, we have w E W,. Now let 

V = W, \{m,}. Since f" < if', V is respectable. Now ff = q~ [ V is an order-two 

mapping of V onto L~, and ~b-~(l~)= {w}. Hence,  there is an ordering <~ of L,  

that respects ff such that l~ is semi-isolated. Obviously, <~ respects also q~. 

This completes the proof of the claim, and of Lemma 2. 

§3. Some reflections on T2-reflections 

By a reflection of a set K we & S = (a~, cr E ~) mean a permutation ~O of K 

satisfying ~O = qf ' .  Let q~ be an order-two function defined on K. Define the 

reflection ~0~ associated with q~ by the requirement that the orbits of ~ are the C- 

inverse-images of points in ~0(K); that is, by the requirement:  

~o-l(~(a))={a,~O(a)} (a EK) .  

We obviously have q~ = ~otp, as ~o(a) = q~(t0(a)) (a E K). 

A reflection qJ of a space K is called a T~-reflection iff ~0 = qJ~ for some 

order-two mapping ~, of K onto a T2-space. If K is compact, every mapping of K 
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into a T2-space is closed, hence a quotient mapping ([3], p. 83-86). Thus, ~0(K) is 

homeomorphic with the quotient space K / - ,  where a -  b iff q~(a)= ~o(b). 

Hence the order-two T,_-images of a compact space K are up to homeomorphism 

the quotient spaces K / - , ,  where to varies on all T2-reflections on K, and a - ~  b 

iff a = b  or a = t o ( b ) .  Let CI(A) denote the closure of A C _ K  in K. The 

following theorem characterizes the T2-reflections of a compact T2-space K: 

THEOREM 5. Let K be a compact Hausdorff space and let to be a reflection of K. 

Then the following are equivalent: 

(1) to is a T2-reflection. 
(2) Whenever A C_ K and CI(A ) (-I CI(to(A )) = O, to [CI(A) is a 

homeomorphism of CI(A) onto Cl(to(A)). 

(3) I r A  and B are disjointed closed subsets of K, D is dense in A and to(D) is 

dense in B, then to (A ) = B. 

The equivalence of (2) and (3) is safely left to the reader; we prove the 

equivalence of (1) and (2). 

(1) ~ (2). Let ~ be an order-two mapping of K onto a R-space satisfying 

to~ =to. We show first that to(CI(A))=CI( to(A)) .  Let a E C l ( A ) .  Let S =  

((a~),tr E E) be a net in A converging to a. Since ~p is continuous, ¢S = 

(q~(a,,), o- E ~) converges to q~(a). ~pS has no other limit, since ~ (K)  is T2 ([3], p. 

55-56). Since K is compact, the net T = toS = (to(a~), ~r E E) has a finer net T' 

that converges to some b E K. Since T' is a net in to(A), b belongs to CI(to(A)). 

Since q~to = q~, we have q~T = q~toS = q~S and so q~T converges to ~(a) ,  hence also 

the finer net q~T' converges to ~ (a). Since q~ is continuous, q~T' converges also to 

~(b). Since ~ (K)  is 7"2, we conclude that q~(b)= ~(a) .  Hence b - ~ a .  By 

a E CI(A ), b E CI(to(A )) and CI(A ) M CI(to(A )) = Q we conclude b ~ a. Hence 

b = to (a), and so to (a) E CI(to (a) ) .  Thus to (Cl(a))  C_ Cl(qJ (a ) ) .  Applying this 
relation to to(A) and using t02 = identity we get to(CI(to(A))C CI(A ). Applying 

tO again we obtain CI(to(A )) C_ qJ(CI(A)) and conclude CI(to(A)) = to(CI(A)). 

We show next that if A, B are disjointed closed subsets of K such that 

to (A)= B, then toa = to I A is a homeomorphism of A onto B, thereby 

establishing (1) ~ (2). Since toA is one to one and onto B, A is compact and B is 

T2, it is enough to show that toA is continuous. Let C = q~(A)= q~to(A)= q~(B). 

Let q~A = q~ I A, q~B = q~ I B. Since q~B is a one to one mapping of the compact 

space B onto the T2 space C, it is a homeomorphism, and so ~ is a continuous 

mapping of C onto B. But obviously, toA = q~I~A, and so toA is continuous. 

(2) ~ (1). Assume that (1) fails. Then K~ ~ is not normal. Since K is normal, 

it follows that ~ ,  is not closed ([3], p. 85, theorem 5). That is, there is a closed 
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set A o C K  such that AoUt~(Ao) is not closed. Since Ao is closed, we 

conclude that there is a net S = (b~, tr E ~) in ~(Ao)\Ao, converging to b, where 

b ~  A,, U ~(Ao). By regularity of K, we may further assume that there is a closed 

neighborhood V of b such that a~ E V for all o- E E, and A~ n V = O. Now let 

A = {~b(b~): tr E ~}. Then A C_ Ao and so CI(A ) C A,,, while 

~ b ( A ) = { b ~ : ~ r E E } C _ V  and so CI( t~(A))CV.  By A , ~ N V = ~  we have 

CI(A) n C I ( ~ ( A ) ) =  ~ .  Now consider T = ~bS = (O(b~), or E E). This is a net in 

A, so by compactness there is a finer net T' converging to some a E A. But ~bT' 

is finer then ~T  = S, so it converges to b. By b ~ A  U ~b(A) we have O ( a ) ~  b, 

and so ~b ICI(A) is not continuous. 

COROLLARY 3.1. Let K be a compact T2-space and let Ao, A z C K be disjoint 

closed subsets of K. Le t  ~ be a reflection of K such that ~ I Ao is a homeomorphism 

of Ao onto A~, and ~b(c)=c for c E K \ ( A , , U  A~). Then K / - ,  

is T2. 

§4. Proof of Theorem 3 

Let K be an ordered space, ordered by < .  Let < '  be another order on K, and 

let K '  denote K ordered by <' .  We say that < '  respects < and that K '  is a 

respectable reordering of K iff K '  is a reordering of K, and for every k, k is a < - 

semi-isolated point iff k is a <'-semi-isolated point. 

PROPOSITION 4.0. Let K be a SCOS, and let A C_ K be a closed set of 

semi-isolated points. Then there is a respectable reordering K '  of K in which every 

point of A is upper-isolated. 

Notice that a closed set of upper isolated points in a compact ordered space is 

well-ordered. 

The proof of Proposition 4.0 depends on the following proposition. 

PROPOSITION 4.1. Let fie denote the class o[ nonzero scattered compact order 

types. Then fie is the smallest class of order types satisfying: 

(0) I ~ fie, 
(1) if p is a regular ordinal, and for each ~ <= p, s~ E fie, then E~ +1 s~ E fie, 

(2) if s ~ fie then s * E S. 

Obviously, the operations mentioned in (1) and (2) preserve scatteredness and 

nonzero-cbmpactness. The proof that every nonzero scattered compact ordered 

type is obtained from the order  type 1 by these operations is a straightforward 
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induction on the characteristic and is left to the reader (see e.g. [4]; notice that 

for p = 1 (1) means that 3 ° is closed under sum of order types). 

PROOF OF PROPOSITION 4.0. The proposition is obvious for a finite SCOS, and 

clearly holds for K* whenever it holds for K. Hence, by Proposition 4.1, we 

conclude by establishing: 

CLAIM. Let p be a regular ordinal, and let K~ be a nonempty SCOS satisfying 

Proposition 4.0 for every a < p. Let K = E~ +~ K~. Then Proposition 4.0 is true 

for K. 

PROOF OF CLAIM. Let A C_ K be a closed subset of semi-isolated points. Let 

As = A f) K~. By hypothesis, for every a < p there is a respectable reordering 

K'~ of K~ such that every point in A~ is upper semi-isolated. As in the proof of 

Lemma 2, K'  = E~ +1K'~ is a respectable reordering of K provided that K~ and 

K~' have the same minimal element for every nonisolated a < p. 

Now, if ma. = rnK. and a is nonisolated, then ma. is not K-lower-isolated, 

hence it is K-upper-isolated. Thus, it is isolated in K, ,  and so obviously any 

respectable reordering of K is easily modified to another respectable reordering 

where inK. is minimal. 

If, on the other hand, mK~ < mA~ let Ko = K ' +  K", where K ' =  [mr~, ma~] if 

mao is K-upper-isolated, and K ' =  [mKo, mao) if mao is not K-upper-isolated. 

Since mAo is K-semi-isolated, K '  is a nonempty clopen interval of K,.  Now it is 

easily checked that if Proposition 4.0 is true of a SCOS, it holds for arbitrary 

clopen subset (use Proposition 2.0). Hence, K" has a respectable reordering K "  

such that every point of A E K" becomes upper-isolated. Obviously, K"  = 

K ' +  K "  is then a respectable reordering of K~ where each point of As is 

upper-isolated, and inK. is minimal. This completes the proof of the claim, and 

thereby proof of Proposition 4.0. 

Let $ be a reflection of a space K, and let L = K [ ~ , .  L is formally the set of 

orbits of ~b, with the quotient topology ([3], p. 83). It will be convenient in the 

sequel to modify the definition and replace an orbit {c} consisting of a single 

point by c. 

Let K = Ko + KI where K0 and K~ are disjoint compact ordered spaces. Let  

A~ C_ K~ be a closed subset of upper-isolated points, and let ~b be a reflection of K 

such that ~ ] A o  is a homeomorphism of Ao onto A,,  and ~/ ,(c)=c for 

c ~K\(Aot_JA~) .  

Let L = K / ~ , ,  and let ~0 be the canonical mapping of K onto L. By our 

convention, ~0 (c) = c for c ~ K \ (Ao t.J A 0. 
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Let i E {0, 1}. For a E A, let Ki ,  a be the largest K-interval satisfying: 

(0) MK,.o = a, 

(1) K,,~ M A, = {a}. 

Since every a E A~ is upper isolated, K~.a is a nonempty clopen K~-interval if a is 

isolated in A~, and K~.a ={a} if a is nonisolated in A~. Let  K ~ ={k  EK e :  

A~ < k}. Then K ~ is a clopen interval in K~, and we have: 

(2) K, = (Z~K,.~)+K'.  

Set K?.~ = K~.o\{a}. For a E Ao order a subset Za of L by the requirement 

(3) La = Ko.a + {~(a)} + (gL~,a))*. 

Finally, let L '  denote the ordered space obtained from L by the requirement:  

(4) L'=(Y~A"Lo)+ K°+ K 1. 

Denote by < '  the order of L '  and call it the ~-order. 

The following properties are clear from the definition: 

(5) Lo is a clopen L'-interval whenever a E Ao is isolated in All. 

(6) L~ = {~(a)} whenever a E Ao is not isolated in Ao. 

(7) K '  is a clopen interval in K~ and in L' ,  inheriting the same order from both 

spaces. 

PROPOSITION 4.2. Let K = Ko + K~ where K0, K1 are disjoint compact ordered 

spaces, let A~ C_ K~ be closed and let 0 be a reflection of K such that ~O I Ao is a 

homeomorphism onto A~, and O(c ) = c ]:or c E K \ (Ao U A O. Let L = K / -  , and 

let L ' be the ordered space obtained from L by the ~b-order <' defined above. Then 

<'  is a consistent order on L, and every K-semi-isolated point of K \ ( A o U  A l )  is 

also L'-semi-isolated. 

PROOF. The last statement is an immediate corollary of the definitions, so we 

need only to show that < '  is a consistent order on L = K l a n .  By Corollary 3.1, L 

is T2. Thus the canonical mapping q~ :K--~ L is closed, and so a quotient 

mapping. Hence it is enough to show that ~o is continuous as a mapping of K 

onto L' .  Since K~ is clopen in K, it is enough to show that ~ - -q~  IK~ is 

continuous, i =  0,1. Since q~o is an order preserving mapping of K0 onto the 

closed subset (Ko\Ao)U q~(Ao) of L ' ,  ~oo is continuous. We show that ~ol is 

K ~ -  continuous. Let ' - Z  A' Kl.b. Then K~--K~ + K ~, and K~, K l are Kl-clopen 

intervals. Since q h l K  ~ is the identity, it is continuous by (7). It is left to show that 

q~ I K[ is continuous as a mapping into L' .  Since both spaces are ordered spaces, 

it suffices to prove the following claim. 

CLAIM. Let # be a nonzero limit ordinal, and let (ca, ~ ~ p) be a sequence in 

K ~ = Z~' K kb converging in K ; to c. Then ( q~ ( c~ ), a E p) converges in L. to q~ ( c ). 
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PROOF OF CLAIM. For d E K~ define 6(d)  by the relation d E Kl.~ta). Thus, 

6 (d)  = min([d, MK] O Am) and since AI is a closed set of upper isolated points, 

is a mapping of K'I onto AI. Let b~ = 6(c~), and distinguish two cases. 

Case O. (be, a E p) is eventually constant. Let b ~ AI, 3 /~  P satisfy b, = b 

for y < a < p. Then ca E Kl,b for y < a < p. 

Case 0.0. b is isolated in A I. Then by (5) Kl,b is a clopen interval of KI, 

~[Kl,b is order inverting mapping onto {~0(O(b))} + (KT, b)*, which is a closed 

interval of L' .  It is then obvious that (~(c , ) ,  a < p) converges, to c = ~(c )  if 

c #  b, and to ~ ( O ( b ) ) =  q~(b)= ~(c)  if c = b. 

Case 0.1. b is not isolated in At .  Then K~,b ={b}, and so c~ = b and 

~(c~) = ~(b)  for y _-<a <p .  Thus b = c and (~(c~),a ~ p )  converges to ~ ( b ) =  

~(c). 
Case 1. (b~, ~ ~ p) is not eventually constant. By continuity of the function 

3, (b~,a E p )  converges to 5(c). Since At is closed and b~ EA~ for ~ ~ p ,  we 

conclude that 8 ( c ) E A ~ .  Moreover,  ~(c) is a nonisolated point of A~, since 

(be, c~ E p) is not eventually constant. Hence K~,,(~)= {6(c)}. By c ~ K~.,(~) we 

have c = 6 (c). 

It follows from (2), (3) and (4) that if a is not isolated in Ao, (a . ,  a ~ p) is a 

sequence in Ao converging to a, and x, ~ L,. (a ~ p) then (x,, a < p) converges 

in L '  to q~(a). Now let a = ~O(c), a.  = q,(b.) and x, = q~(c.). Since $ [A1 is a 

homeomorphism, ( a , , a  GO) converges to a, and a is not isolated in A0. 

~o(c.) = x, E L,. follows from ca ~ K~.~o, the definition of q~, (3) and q~q, = q~, as 

we have: 

q~ (Kt.~.) = {~o (b,,)} U K~-.b. = {9 (~b(b~))} U K~-,~. C Lo(t,.) = La.. 

Thus, (q~(c~), a ~ p) converges in L '  to q~(a)= ~o($(c))= ~o(c). 

PROOF OF THEOREM 3. Let  K be the topological sum of the respectable 

scattered compact T2-spaces Ko and K,. Let  K '  be a T2-space, and let ~o be an 

order-two mapping of K onto K'.  We show that K '  has an order  that respects ~o. 

Let  K; = q~(K~), i = 0, 1 and let A '  = K~fq K~. Then K~, K~, A '  are compact 

scattered spaces, being closed subsets of K'.  Let ~0~ = q~ [ K~, A~ = q~-l(A') O K,. 

Then q~ is an order-two mapping of K~ onto K'~, and since q~ is order-two, q~ I A, 
is a one to one mapping of A~ onto A '. Let <', be an order on K', that respects ~0~ 

(such an order exists, as K~ is respectable). Since q~, I A~ is one to one, each 

a ~ A '  is <'~-semi-isolated, and by Proposition 4.0 we may assume that each 

a ~ A '  is < ' u p p e r  isolated (i = 0, 1). L e t / ~  be the set K; x {i} ordered by the 

order  <, defined by (a, i )< ,  (b, i) iff a <'~b (a, b ~ K;). Define qS, : K~ --->/(~ by 

~ ( k ) = ( ~ o ( k ) , i )  ( k E K ~ ;  i = 0 , 1 ) .  Then /(o, /~  are disjoint SCOSs, A , =  
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A '  x {i} is a closed subset of upper-isolated points in/~i, and ,~, I A, is a one to 

one mapping of A, onto ft.,. Le t /~  =/~o +/(~. Define ~ : K ~ / ~  by q5 I Ki = ~i, 
and r I : / ~  K '  by II((b, i)) = b (b E K'~, i = 0, 1). Since <'~ is a consistent order 

on K'~, IL = III/~i is a homeomorphism o f / ~  onto K'~ mapping fi,~ onto A '. 

Thus, II, ,~ are order-two mappings, and ,p = Ilff. 

Define a reflection 6 of / (  by 6((a, i)) = (a, 1 - i) for a E A' ,  i = 0, 1, and 

6((b, i)) = (b, i) for b E K ' \ A  '. Then 6 I Ao is a homeomorphism of Ao onto A1 

and 6 ( c ) =  c for c eg\(AouA,). Obviously, 6 = ~n (see §3). 
Let L = / ( / - , ,  and let ~ be the canonical mapping of / (  onto L. Then we 

have ~ = ~,.  Let < '  denote the ¢~-order on L (see Proposition 4.2) and let L '  

denote L ordered by <'.  By Proposition 4.2, 6 is a mapping of /~ onto L' .  

Finally, define mapping qb of K onto L '  by qb = ~ .  

CLAtM. ~(X)= ~(y) ill ~(X)=~(y) (x,y ~K). 

This follows from ~ = IIqS, ,I~ = ~ff and ~ = ~bu = ~b¢. 

Let ~ = ~ be the reflection associated with ,p. By the claim, ~ = ~ . .  Define 

an ordering < on K'  by ~ ( x ) <  ~ (y )  iff ~ ( x ) < ' ~ ( y )  (x, y ~ K). We complete 

the proof by showing that < respects ,p. < is a consistent order on K'  since < '  is 

a consistent order on L, by Proposition 4.2. Let k E K and assume that 
~-~(,p (k)) = {k}. We show that ,p(k) is < -semi-isolated. By definition of < ,  it is 

enough to show that qb(k) is <'-semi-isolated. First note that k ~  Ao U A,,  else 

,p (k) E A '  and so ~p-~(k) O Ao ~ O and ~-~(k) n A~ ~ O, whence ] ~,-'(~(k))] > 
1. Thus for some i E {0, 1} we have k ~. K~ \A , ,  ~p(k) ~_ K ; \ A '  and ~-~(,p, (k)) = 
{k}. Since <; respects ,p~, we see that (,p (k), i) ~/(~ is <i-semi-isolated, and so by 

the final clause of Proposition 4.2, ~ ( k ) =  ,~((,p(k), i)) is <'-semi-isolated; that 

is, qb(k) is semi-isolated in L'.  
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