ORDER-TWO CONTINUOUS HAUSDORFF IMAGES OF COMPACT ORDINALS

BY GADI MORAN

ABSTRACT

THEOREM. Let K be a Hausdorff space. The following conditions are equivalent: (a) K is homeomorphic to a compact scattered ordered space; (b) K is an order-two image of a compact ordinaL.

§0. Introduction

The theorem stated in the abstract appears as theorem 5 in [4], where it is shown that (a) implies (b). The purpose of this note is to establish it by showing that (b) implies (a). As a T_2 -image of a compact scattered T_2 -space is again a compact scattered T_2 -space ([5], lemma 1), we need the following theorem.

THEOREM 1. Let K be an order-two T_2 -image of a compact well ordered space *W. Then K is orderable.*

Let us spell-out this statement. We call a function $f: X \rightarrow Y$ an *order-two function* iff for every $y \in Y$ there are at most two solutions in X to the equation $f(x) = y$. A *mapping* means a continuous function. If X, Y are topological spaces and f is a mapping of X onto Y we call Y an *image* of X. If, in addition, Y is a T_2 -(Hausdorff) space we call Y a T_2 -image of X, and if there is an order-two mapping of X onto Y then Y is an *order-two image ofX.* A topological space Y is *orderable* iff there is a linear ordering on Y that induces Y's topology.

None of the assumptions of Theorem 1 can be considerably weakened. In [4] it is shown that an order-three T_2 -image of a compact well-ordered space (CWOS) need not be orderable. The most familiar nonorderable order-two- T_2 -image of a compact ordered space is the circle $(f(t)) = e^{2\pi i t}$ is an order-two mapping of the unit interval on the unit circle). The mentioned example in [4] is easily modified to show that even an order-two-T2-image of a *scattered* compact ordered space

Received April 24, 1981

(SCOS) need not be orderable. Finally compactness cannot be dismissed, as there exist countable T_2 -spaces that are not orderable — for example Arens' space $(1]$, see, e.g. $[3]$, p. (109) — and every such space is a one to one image of the (discrete) ordinal ω .

We outline the argument in §1, and give the detailed proof in subsequent sections. §3 contains a characterization of T_2 -order-two images of arbitrary compact T_2 -spaces, in terms of properties of their associated reflections (defined there).

A study of the structure of perfect images of CWOSs is found in [6].

§1. Outline of proof - from bottom to roof

Our notation follows [4] and otherwise [3]. In particular, *order* means always linear order; $m_A(M_A)$ denotes the minimal (maximal) member of the ordered set A, whenever it exists. A^* denotes the set A with its order reversed. If B_a is an ordered set for each a in the ordered set A, and $B_a \cap B_{a'} = \emptyset$ for $a \neq a'$, then $\Sigma_a^A B_a$ denotes the ordered set obtained from $\bigcup_{a \in A} B_a$ by retaining the given order on each B_a and requiring $B_a < B_{a'}$ if $a < a'$. A point a in A is called *upper (lower)* isolated iff it does not belong to the closure of $\{x \in A : a < x\}$ $({x \in A : x < a})$. *a* is *semi-isolated* if it is either upper or lower isolated. \overline{A} denotes the order-type of A. The order type of a well-ordered set is the ordinal order-isomorphic to it. A *space* will mean a topological space. An order on a space K is a *consistent order* (with K's topology) if it induces K's topology. Thus, K is orderable iff there is a consistent order on K. Two orders on a set K are *consistent* if they induce the same topology. If K' is an ordered space obtained from an ordered space K by replacing its order by a consistent order, we call K' *a reordering* of K.

Let φ be a mapping of W onto K. We say that an order \leq on K respects φ iff $<$ is a consistent order on K, and $\varphi(w)$ is semi-isolated whenever $\varphi^{-1}(\varphi(w))$ = $\{w\}$. A mapping φ of W is called *respectable* iff there is an order on $\varphi(W)$ that respects φ . We say that *W* is respectable if every order-two mapping φ of *W* onto a T_2 -space is respectable. Theorem 1 is a consequence of

THEOREM 2. *Every* CWOS *is respectable.*

Theorem 2 is proved by induction on the order type of the CWOS W . It is enough to consider CWOS of type $\omega^* \cdot m + 1$ (v an ordinal, $m \in \omega$) as every CWOS W is homeomorphic to a CWOS of this type ([2], lemma 3). Theorem 3 carries the induction from $\omega^{\nu} + 1$ to $\omega^{\nu} \cdot m + 1 = (\omega^{\nu} + 1) \cdot m$:

THEOREM 3. Let K_i be a scattered compact T_2 -space, $i = 0, 1$, and let K be the *topological sum of* K_0 *and* K_1 . If K_0 *and* K_1 *are respectable, so is* K.

The proof is given in §4.

COROLLARY. Let W_i be a scattered compact ordered space $(SCOS)$ for $i < m$. If *W_i* is respectable, $i < m$, so is $W = \sum_{i=1}^{m} W_i$.

Theorem 2 follows from this corollary and

THEOREM 4. Let W be a CWOS, $\overline{W} = \omega^{\nu} + 1$. If every CWOS *V* with \overline{V} $\lt \omega$ ^{ν} + 1 is respectable, so is W.

Our proof of Theorem 4 relies on two Lemmata, whose proofs are given in §2.

LEMMA 1. Let W be a CWOS, $\overline{W} = \omega^{\nu} + 1$, let $\rho = cf(\omega^{\nu})$ and let φ be a *mapping of W onto a T₂-space satisfying* $\varphi^{-1}(\varphi(M_w)) = \{M_w\}$. *Then there is a reordering W' of W such that* $\overline{W'} = \omega^* + 1$, and $W' = (\sum_{\alpha}^{\circ} W_{\alpha}) + \{M_{\alpha}\}\$, where W_{α} *is closed in W', and* $\varphi^{-1}(\varphi(W_\alpha))=W_\alpha$ ($\alpha < \rho$).

LEMMA 2. Let W be a CWOS such that every CWOS V with $\bar{V} < \bar{W}$ is *respectable. Let* $W = (\sum_{\alpha}^{P} W_{\alpha}) + \{M_{w}\}\$, where ρ is a limit ordinal, and W_{α} is closed *in W. Let* φ *be an order-two-mapping of W such that* $\varphi^{-1}(\varphi(W_{\alpha})) = W_{\alpha}$ for $\alpha < \rho$ *(hence also* $\varphi^{-1}(\varphi(M_w)) = \{M_w\}$ *). Then* φ *is respectable.*

PROOF OF THEOREM 4. Let φ be an order-two mapping of W onto a T_2 -space. We have to show that φ is respectable. If $\varphi^{-1}(\varphi(M_w))=\{M_w\}$ then φ is respectable by Lemmata 1 and 2. If not, then for some $w < M_w$ we have $\varphi^{-1}(\varphi(M_w)) = \{w, M_w\}$ as φ is an order-two mapping. Let $W_0 = [m_w, w]$, $W_1 =$ (w, M_w) . Then $W = W_0 + W_1$, where W_0 , W_1 are CWOSs, and $\overline{W}_0 < \overline{W}$. Let $\varphi_i = \varphi \mid W_i$. Then φ_i is an order-two mapping of W_i onto a T_2 -space, $i = 0, 1$. By hypothesis, φ_0 is respectable. Now $\bar{W}_1 = \omega^{\nu} + 1$ and $\varphi_1^{-1}(\varphi_1(M_{w_1})) = \{M_w\} =$ ${M_{w}}$; hence, by the previous case φ_1 is also respectable. Hence, by the proof of Theorem 3 (§4), φ is respectable.

§2. Proof of the Lemmata (Milma'|a 'ad Lemata)

Let K be an ordered set. A subset V of K is called *convex subset* or *interval* if $a, b \in V$ and $a < t < b$ implies $t \in V$, i.e., $(a, b) \subseteq V$. For arbitrary $U \subseteq K$, $a, b \in U$, let $a \sim b$ iff $(a, b) \subseteq U$. Then \sim is an equivalence relation on U, whose equivalence classes are called the *convex components* of U. If U is open (closed) then every convex component of U is open (closed). If K is compact and U is

clopen ($=$ closed and open), then by compactness U has finitely many convex components, each of which is a clopen interval in K. Thus we have

PROPOSITION 2.0. *Let K be a compact ordered space, and let U be a subset of K. Then U is clopen iff U is a finite union of disjointed clopen intervals of K.*

PROPOSITION 2.1. Let K be a compact ordered space, and let \leq be its order. *Let p be an ordinal, and let A denote the set of nonzero limit ordinals not exceeding p. Let* ${K_\alpha : 0 \leq \alpha \leq \rho}$ *be a partition of K into nonempty closed subsets. Let* $m_{\alpha} = m_{K_{\alpha}}$, $M_{\alpha} = M_{K_{\alpha}}$. Assume:

(i) K_{α} is clopen in $[m_{\alpha}, M_K]$, and for $\alpha \notin \Lambda$, K_{α} is clopen in K.

(ii) Let $\alpha \in \Lambda$. Then for every $\gamma < \alpha$ there is a $k_0 < m_\alpha$ such that $(k_0, m_\alpha) \subseteq$ $\bigcup_{\gamma \leq \beta < \alpha} K_{\beta}.$

Let K' denote the set K ordered by the order relation <' defined by the requirements :

 $(1) \lt' | K_\alpha = \lt | K_\alpha \ (0 \leq \alpha \leq \rho),$

(2) $K' = (\sum_{\alpha}^{\rho} K_{\alpha}) + K_{\rho}$.

Then K' is a reordering of K.

PROOF. We need to show that the identity mapping of K onto K' is a homeomorphism. It is one to one and onto, so since K is compact and K' is Hausdorff, we only have to show continuity. Let $k \in K_\alpha$, and let V' be a K'open-interval containing k . We shall show that there is a K-open-interval V containing k such that $V \subseteq V'$. Let U be the K-convex-component of K_{α} containing k . By (i) and Proposition 2.0, U is a clopen interval of the K-closed interval $[m_\alpha, M_K]$ and by (1), (2) it is also a K'-closed interval, clopen in the K'-closed interval K_{α} . Also, <' $|U| =$ < $|U|$ by (1). We now distinguish two cases:

Case 0. $\alpha \notin \Lambda$. Then U is a K-open-interval and also a K'-open-interval. Let $V = V' \cap U$. Obviously, $k \in V$. Since V' is also a K'-open-interval, so is V. Thus V is a U -open-interval, hence a K -open-interval.

Case 1. $\alpha \in \Lambda$. If $m_{\alpha} < k$, let $V = (U \setminus \{m_{\alpha}\}) \cap V'$, and repeat the previous argument (with $U\backslash\{m_{\alpha}\}$ for U) to show that V is a K-open interval containing k. Assume $k = m_{\alpha}$. Let $V_0 = U \cap V'$. Then $k \in V_0$, and V_0 is a U-open-initialsegment contained in V'. Now V' is an open K'-interval, $m_{\alpha} \in V'$, and $\alpha \in \Lambda$, so there is by (2) a $\gamma < \alpha$ such that $\bigcup_{\gamma \leq \beta < \alpha} K_{\beta} \subseteq V'$. Hence by (ii) there is a $k_0 < m_\alpha$ such that the K-open interval (k_0, m_α) is included in $\bigcup_{\gamma \leq \beta < \alpha} K_\beta$, hence in V'. Thus, $V = (k_0, m_\alpha) \cup V_0$ is a K-open-interval containing m_α and included in V'.

PROOF OF LEMMA 1. Let $m = m_w$, $M = M_w$, $L = \varphi(W)$, $l = \varphi(M)$. Then L is $T₂$, compact and scattered, hence zero dimensional [7, p. 168]. Thus, its clopen subsets form a base to the topology. Hence, whenever $L_0 \subseteq L$ is closed and $l \notin L_0$, there is a clopen $L' \subseteq L$ such that $L_0 \subseteq L' \subseteq L \setminus \{l\}$. We shall use this fact to obtain a partition $\{W_{\alpha}: 0 \leq \alpha \leq \rho\}$ of W into closed sets satisfying (i) and (ii) of Proposition 2.1, and also $\varphi^{-1}(\varphi(W_\alpha))=W_\alpha$.

Let $(a_{\alpha})_{\alpha<\rho}$ be an increasing cofinal sequence in $[m, M)$, and let Λ denote the set of nonzero limit ordinals not greater than ρ . We define W_{α} so that setting $m_{\alpha} = m_{\nu_{\alpha}}$, $M_{\alpha} = M_{\nu_{\alpha}}$, $V_{\alpha} = \bigcup_{\beta \leq \alpha} W_{\beta}$, the following conditions hold:

(a) W_{α} is a nonempty clopen subset of $[m_{\alpha}, M]$, W_{α} is a nonempty clopen subset of W for $\alpha \notin \Lambda$, and $W_{\alpha} \cap W_{\beta} = \emptyset$ for $0 \le \alpha < \beta \le \rho$.

(b) $[m, \max(M_\alpha, a_\alpha)] \subseteq V_{\alpha+1} \subseteq [m, M_{\alpha+1}],$ and $M_\alpha \leq M$ $(\alpha \leq \rho)$.

(c) $V_{\alpha} = [m, m_{\alpha})$ for $\alpha \in \Lambda$.

(d) $\varphi^{-1}(\varphi(W_\alpha))=W_\alpha$ ($0\leq \alpha \leq \rho$).

(a) and (b) imply that $W_{\rho} = \{M\}$ and that $\{W_{\alpha} : 0 \le \alpha \le \rho\}$ is a partition of W into closed sets. (a) guarantees (i) of Proposition 2.1; (b) and (c) guarantee (ii) (if $\gamma < \alpha \in \Lambda$ then $(M_{\gamma+1}, m_{\alpha}) \subseteq V_{\alpha} \setminus V_{\gamma+1} = \bigcup_{\gamma \leq \beta < \alpha} W_{\beta}$.

We now turn to the inductive definition of W_{α} , V_{α} . By definition, $V_0 = \emptyset$. Assuming W_{β} defined for all $\beta < \alpha$ so that (a), (b), (c), (d) hold, we note that V_{α} is bounded in $[m, M)$ (if $\alpha \notin \Lambda$ by (b); if $\alpha \in \Lambda$ by $\alpha < \rho = cf(M)$). Let $\gamma < \rho$ be smallest such that $V_{\alpha} < a_{\gamma}$. Since $\varphi([m, a_{\gamma}])$ is closed in L and does not contain l, we may choose L' to be a clopen subset of L satisfying $\varphi([m, a_{\gamma}]) \subseteq L' \subseteq L \setminus \{l\}.$ Let $V_{\alpha+1} = \varphi^{-1}(L')$ and let $W_{\alpha} = V_{\alpha+1} \setminus V_{\alpha}$. Since $\varphi^{-1}(l) = \{M\}$, $\varphi^{-1}(L')$ is bounded in $[m, M)$ whenever L' is a closed subset of L and $l \notin L'$. Hence $V_{\alpha+1}$ is a clopen subset of W, bounded in $[m, M)$. The verification of (a), (b), (c), (d) is straightforward.

It is left to show that $\bar{W}' = \omega^* + 1$. Now \bar{W}' is a CWOS, whose v'th derived set is nonempty, as W' is homeomorphic to W. Thus, $\omega^* + 1 \leq \overline{W}'$ ([2], lemma 1). On the other hand, it is easily verified by induction that every initial segment of $W'\backslash\{M\}$ has order-type smaller than ω^{ν} , whence $\overline{W}' = \omega^{\nu} + 1$.

PROOF OF LEMMA 2. Let $L = \varphi(W)$, $L_{\alpha} = \varphi(W_{\alpha})$, $\varphi_{\alpha} = \varphi|W_{\alpha}$, $m_{\alpha} = m_{\omega_{\alpha}}$, $M_{\alpha} = M_{w_{\alpha}}$ ($\alpha < \rho$). Let $l = \varphi(M_{w})$. Let Λ be the set of nonzero limit ordinals not greater than ρ . Since W_{α} is a CWOS and $\tilde{W}_{\alpha} < \tilde{W}, W_{\alpha}$ is respectable for $\alpha < \rho$, and so since φ_{α} is an order-two mapping of W_{α} onto L_{α} , L_{α} carries an order \lt_{α} that respects φ_{α} . By $\varphi^{-1}(L_{\alpha}) = W_{\alpha}$, we have $L_{\alpha} \cap L_{\beta} = \emptyset$ for $\alpha \neq \beta$. Thus, the ordering \leq on L defined by the requirements:

(1) $\langle L_{\alpha} = \langle L_{\alpha} | L_{\alpha} (\alpha \leq \rho),$

$$
(2) L = (\Sigma_{\alpha}^{\rho} L_{\alpha}) + \{l\},
$$

respects φ , provided that it is a consistent ordering of L. Since φ is a closed

function, it is a quotient mapping ($[3]$, p. 83-85). Hence \lt is a consistent ordering of L iff φ is continuous as a function from W into L with the order topology. This in turn holds iff for every transfinite sequence $(a_{\alpha})_{\alpha < \tau}$ in W convergent to $a \in W$, $(\varphi(a_{\alpha}))_{\alpha \leq \tau}$ is convergent in the ordered space L to $\varphi(a)$. It follows that \leq is a consistent ordering of L iff for every $\alpha \in \Lambda$, $\varphi(m_{\alpha})$ is the \lt_{α} -first-element of L_{α} . Hence to complete the proof it is enough to prove

CLAIM. *There is an ordering* \lt_{α} of L_{α} that respects φ_{α} , such that $\varphi(m_{\alpha})$ is the \lt_{α} -first-element of L_{α} .

PROOF OF CLAIM. Notice first that whenever K is an ordered space with a maximal element and a minimal element, and $k \in K$ is semi-isolated, there is a reordering K' of K where k is minimal, such that a point of K is semi-isolated in K iff it is semi-isolated in K'. Indeed, if k is semi-isolated, then $K = K_0 + K_1$ where K_0 has a maximal element (or is empty), K_1 has a minimal element (or is empty) and $k = M_{K_0}$ or $k = m_{K_1}$. In the first case let $K' = K_0^* + K_1$, and in the second let $K' = K_1 + K_0$.

Let $I_{\alpha} = \varphi(m_{\alpha}) = \varphi_{\alpha}(m_{\alpha})$. We conclude by showing that L_{α} has an ordering that respects φ_{α} such that l_{α} is semi-isolated. Consider two cases.

Case 0. $|\varphi^{-1}(l_{\alpha})|=1$. As $m_{\alpha} \in \varphi^{-1}(l_{\alpha})$, we have in this case $\varphi^{-1}(l_{\alpha})=\{m_{\alpha}\}.$ Since m_{α} is isolated in W_{α} , and since φ_{α} maps for each ordinal ν the ν 'th derivative $W_{\alpha}^{(\nu)}$ of W_{α} onto $L_{\alpha}^{(\nu)}$ ([5], lemma 1), l_{α} is isolated in L_{α} .

Case 1. $|\varphi^{-1}(l_{\alpha})|>1$. Since φ is order two, $|\varphi^{-1}(l_{\alpha})|=2$ and so for some $w \neq m_\alpha$, $\varphi^{-1}(l_\alpha) = \{m_\alpha, w\}$. Since $\varphi^{-1}(L_\alpha) = W_\alpha$, we have $w \in W_\alpha$. Now let $V = W_a \setminus \{m_a\}$. Since $\overline{V} < \overline{W}$, V is respectable. Now $\overline{\varphi} = \varphi \mid V$ is an order-two mapping of V onto L_{α} , and $\tilde{\varphi}^{-1}(l_{\alpha}) = \{w\}$. Hence, there is an ordering \leq_{α} of L_{α} that respects $\tilde{\varphi}$ such that l_{α} is semi-isolated. Obviously, \leq_{α} respects also φ .

This completes the proof of the claim, and of Lemma 2.

§3. Some reflections on T₂-reflections

By a *reflection* of a set K we & $S = \langle a_{\sigma}, \sigma \in \Sigma \rangle$ mean a permutation ψ of K satisfying $\psi = \psi^{-1}$. Let φ be an order-two function defined on K. Define the *reflection* ψ_{φ} associated with φ by the requirement that the orbits of ψ_{φ} are the φ inverse-images of points in $\varphi(K)$; that is, by the requirement:

$$
\varphi^{-1}(\varphi(a)) = \{a, \psi(a)\} \qquad (a \in K).
$$

We obviously have $\varphi = \varphi \psi$, as $\varphi(a) = \varphi(\psi(a))$ $(a \in K)$.

A reflection ψ of a space K is called a *T₂-reflection* iff $\psi = \psi_{\varphi}$ for some order-two mapping φ of K onto a T₂-space. If K is compact, every mapping of K

into a T_2 -space is closed, hence a quotient mapping ([3], ρ . 83–86). Thus, $\varphi(K)$ is homeomorphic with the quotient space K/\sim , where $a \sim b$ iff $\varphi(a) = \varphi(b)$. Hence the order-two T_2 -images of a compact space K are up to homeomorphism the quotient spaces K/\sim_{ψ} , where ψ varies on all T₂-reflections on K, and $a \sim_{\psi} b$ iff $a=b$ or $a=\psi(b)$. Let Cl(A) denote the closure of $A\subseteq K$ in K. The following theorem characterizes the T_2 -reflections of a compact T_2 -space K :

THEOREM 5. Let K be a compact Hausdorff space and let ψ be a reflection of K. *Then the following are equivalent:*

(1) ψ is a T₂-reflection.

(2) Whenever $A \subseteq K$ and $Cl(A) \cap Cl(\psi(A)) = \emptyset$, $\psi |Cl(A)$ *is a homeomorphism of* $Cl(A)$ *onto* $Cl(\psi(A))$.

(3) If A and B are disjointed closed subsets of K, D is dense in A and $\psi(D)$ is *dense in B, then* $\psi(A) = B$.

The equivalence of (2) and (3) is safely left to the reader; we prove the equivalence of (1) and (2).

(1) \Rightarrow (2). Let φ be an order-two mapping of K onto a T₂-space satisfying $\psi_{\varphi} = \psi$. We show first that $\psi(Cl(A)) = Cl(\psi(A))$. Let $a \in Cl(A)$. Let $S =$ $\langle (a_{\sigma}), \sigma \in \Sigma \rangle$ be a net in A converging to a. Since φ is continuous, $\varphi S =$ $\langle \varphi(a_{\sigma}), \sigma \in \Sigma \rangle$ converges to $\varphi(a)$. φS has no other limit, since $\varphi(K)$ is T_2 ([3], p. 55-56). Since K is compact, the net $T = \psi S = \langle \psi(a_{\sigma}), \sigma \in \Sigma \rangle$ has a finer net T' that converges to some $b \in K$. Since T' is a net in $\psi(A)$, b belongs to Cl($\psi(A)$). Since $\varphi\psi = \varphi$, we have $\varphi T = \varphi\psi S = \varphi S$ and so φT converges to $\varphi(a)$, hence also the finer net $\varphi T'$ converges to $\varphi(a)$. Since φ is continuous, $\varphi T'$ converges also to $\varphi(b)$. Since $\varphi(K)$ is T_z , we conclude that $\varphi(b) = \varphi(a)$. Hence $b \sim_{\psi} a$. By $a \in Cl(A)$, $b \in Cl(\psi(A))$ and $Cl(A) \cap Cl(\psi(A)) = \emptyset$ we conclude $b \neq a$. Hence $b = \psi(a)$, and so $\psi(a) \in \text{Cl}(\psi(A))$. Thus $\psi(\text{Cl}(A)) \subseteq \text{Cl}(\psi(A))$. Applying this relation to $\psi(A)$ and using ψ^2 = identity we get $\psi(\text{Cl}(\psi(A))\subseteq \text{Cl}(A)$. Applying ψ again we obtain $Cl(\psi(A)) \subseteq \psi(Cl(A))$ and conclude $Cl(\psi(A)) = \psi(Cl(A))$.

We show next that if A , B are disjointed closed subsets of K such that $\psi(A) = B$, then $\psi_A = \psi \mid A$ is a homeomorphism of A onto B, thereby establishing (1) \Rightarrow (2). Since ψ_A is one to one and onto B, A is compact and B is T_2 , it is enough to show that ψ_A is continuous. Let $C = \varphi(A) = \varphi(\psi(A)) = \varphi(B)$. Let $\varphi_A = \varphi \mid A, \varphi_B = \varphi \mid B$. Since φ_B is a one to one mapping of the compact space B onto the T_2 space C, it is a homeomorphism, and so φ_B^{-1} is a continuous mapping of C onto B. But obviously, $\psi_A = \varphi_B^{-1} \varphi_A$, and so ψ_A is continuous.

(2) \Rightarrow (1). Assume that (1) fails. Then K/\sim_{ψ} is not normal. Since K is normal, it follows that \sim_{ψ} is not closed ([3], p. 85, theorem 5). That is, there is a closed set $A_0 \subseteq K$ such that $A_0 \cup \psi(A_0)$ is not closed. Since A_0 is closed, we conclude that there is a net $S = \langle b_{\sigma}, \sigma \in \Sigma \rangle$ in $\psi(A_0) \setminus A_0$, converging to b, where $b \notin A_0 \cup \psi(A_0)$. By regularity of K, we may further assume that there is a closed neighborhood V of b such that $a_{\sigma} \in V$ for all $\sigma \in \Sigma$, and $A_0 \cap V = \emptyset$. Now let $A = \{\psi(b_{\sigma}) : \sigma \in \Sigma\}.$ Then $A \subseteq A_0$ and so $Cl(A) \subseteq A_0$, while $\psi(A) = \{b_{\sigma} : \sigma \in \Sigma\} \subseteq V$ and so $Cl(\psi(A)) \subseteq V$. By $A_0 \cap V = \emptyset$ we have $Cl(A) \cap Cl(\psi(A)) = \emptyset$. Now consider $T = \psi S = (\psi(b_{\sigma}), \sigma \in \Sigma)$. This is a net in A, so by compactness there is a finer net T' converging to some $a \in A$. But $\psi T'$ is finer then $\psi T = S$, so it converges to b. By $b \notin A \cup \psi(A)$ we have $\psi(a) \neq b$, and so ψ | Cl(A) is not continuous.

COROLLARY 3.1. Let K be a compact T_2 -space and let A_0 , $A_1 \subseteq K$ be disjoint *closed subsets of K. Let* ψ *be a reflection of K such that* $\psi \mid A_0$ *is a homeomorphism of* A_0 *onto* A_1 , *and* $\psi(c) = c$ *for* $c \in K \setminus (A_0 \cup A_1)$. Then K/\sim_{ψ} is T_2 .

§4. Proof of Theorem 3

Let K be an ordered space, ordered by \leq . Let \leq' be another order on K, and let K' denote K ordered by \lt' . We say that \lt' *respects* \lt and that K' is a *respectable reordering* of K iff K' is a reordering of K, and for every k, k is a \lt semi-isolated point iff k is a \leq -semi-isolated point.

PROPOSITION 4.0. Let K be a SCOS, and let $A \subseteq K$ be a closed set of *semi-isolated points. Then there is a respectable reordering K' of K in which every point of A is upper-isolated.*

Notice that a closed set of upper isolated points in a compact ordered space is well-ordered.

The proof of Proposition 4.0 depends on the following proposition.

PROPOSITION 4.1. Let $\mathcal G$ denote the class of nonzero scattered compact order $types.$ Then $\mathcal G$ is the smallest class of order types satisfying:

- (0) 1 $\in \mathcal{S}$,
- (1) *if* ρ *is a regular ordinal, and for each* $\alpha \leq \rho$, $s_{\alpha} \in \mathcal{G}$, then $\Sigma_{\alpha}^{p+1} s_{\alpha} \in \mathcal{G}$,
- (2) if $s \in \mathcal{S}$ then $s^* \in S$.

Obviously, the operations mentioned in (1) and (2) preserve scatteredness and nonzero-cbmpactness. The proof that every nonzero scattered compact ordered type is obtained from the order type 1 by these operations is a straightforward induction on the characteristic and is left to the reader (see e.g. [4]; notice that for $\rho = 1$ (1) means that \mathcal{S} is closed under sum of order types).

PROOF OF PROPOSITION 4.0. The proposition is obvious for a finite SCOS, and clearly holds for K^* whenever it holds for K. Hence, by Proposition 4.1, we conclude by establishing:

CLAIM. Let ρ be a regular ordinal, and let K_{α} be a nonempty SCOS satisfying *Proposition 4.0 for every* $\alpha \leq \rho$ *. Let* $K = \sum_{\alpha}^{\rho+1} K_{\alpha}$. Then Proposition 4.0 is true *for K.*

PROOF OF CLAIM. Let $A \subseteq K$ be a closed subset of semi-isolated points. Let $A_{\alpha} = A \cap K_{\alpha}$. By hypothesis, for every $\alpha < \rho$ there is a respectable reordering K'_{α} of K_{α} such that every point in A_{α} is upper semi-isolated. As in the proof of Lemma 2, $K' = \sum_{\alpha}^{e+1} K'_{\alpha}$ is a respectable reordering of K provided that K_{α} and K'_{α} have the same minimal element for every nonisolated $\alpha \leq \rho$.

Now, if $m_{A_n} = m_{K_n}$ and α is nonisolated, then m_{A_n} is not K-lower-isolated, hence it is K-upper-isolated. Thus, it is isolated in K_{α} , and so obviously any respectable reordering of K is easily modified to another respectable reordering where m_{K_n} is minimal.

If, on the other hand, $m_{K_{\alpha}} < m_{A_{\alpha}}$ let $K_0 = K' + K''$, where $K' = [m_{K_{\alpha}}, m_{A_{\alpha}}]$ if $m_{A_{\alpha}}$ is K-upper-isolated, and $K' = [m_{K_{\alpha}}, m_{A_{\alpha}}]$ if $m_{A_{\alpha}}$ is not K-upper-isolated. Since $m_{A_{\alpha}}$ is K-semi-isolated, K' is a nonempty clopen interval of K_{α} . Now it is easily checked that if Proposition 4.0 is true of a SCOS, it holds for arbitrary clopen subset (use Proposition 2.0). Hence, K" has a respectable reordering *K"* such that every point of $A \in K''$ becomes upper-isolated. Obviously, K'_a = $K' + K'''$ is then a respectable reordering of K_{α} where each point of A_{α} is upper-isolated, and m_{K_n} is minimal. This completes the proof of the claim, and thereby proof of Proposition 4.0.

Let ψ be a reflection of a space K, and let $L = K/\sim_{\psi} L$ is formally the set of orbits of ψ , with the quotient topology ([3], p. 83). It will be convenient in the sequel to modify the definition and replace an orbit $\{c\}$ consisting of a single point by c.

Let $K = K_0 + K_1$ where K_0 and K_1 are disjoint compact ordered spaces. Let $A_i \subseteq K_i$ be a closed subset of upper-isolated points, and let ψ be a reflection of K such that $\psi | A_0$ is a homeomorphism of A_0 onto A_1 , and $\psi(c) = c$ for $c \in K \setminus (A_0 \cup A_1).$

Let $L = K/\sim_{\psi}$, and let φ be the canonical mapping of K onto L. By our convention, $\varphi(c) = c$ for $c \in K \setminus (A_0 \cup A_1)$.

Let $i \in \{0, 1\}$. For $a \in A_i$ let $K_{i,a}$ be the largest K-interval satisfying:

(0) $M_{K_{i,a}} = a$,

(1) $K_{i,a} \cap A_i = \{a\}.$

Since every $a \in A_i$ is upper isolated, $K_{i,a}$ is a nonempty clopen K_i -interval if a is isolated in A_i , and $K_{i,a} = \{a\}$ if a is nonisolated in A_i . Let $K^i = \{k \in K_i:$ $A_i < k$. Then K^i is a clopen interval in K_i , and we have:

(2) $K_i = (\sum_{a}^{A} K_{i,a}) + K^i$.

Set $K_{i,a}^- = K_{i,0} \setminus \{a\}$. For $a \in A_0$ order a subset L_a of L by the requirement (3) $L_a = K_{0,a}^- + {\phi(a)} + (K_{1,\psi(a)}^-)^*.$

Finally, let L' denote the ordered space obtained from L by the requirement: (4) $L' = (\sum_{a=0}^{A_0} L_a) + K^0 + K^1$.

Denote by \lt' the order of L' and call it the ψ -order.

The following properties are clear from the definition:

(5) L_a is a clopen L'-interval whenever $a \in A_0$ is isolated in A_0 .

(6) $L_a = {\varphi(a)}$ whenever $a \in A_0$ is not isolated in A_0 .

(7) K^i is a clopen interval in K_i and in L' , inheriting the same order from both spaces.

PROPOSITION 4.2. *Let* $K = K_0 + K_1$ where K_0 , K_1 are disjoint compact ordered *spaces, let* $A_i \subseteq K_i$ *be closed and let* ψ *be a reflection of* K *such that* $\psi \mid A_0$ *is a homeomorphism onto* A_1 *, and* $\psi(c) = c$ for $c \in K \setminus (A_0 \cup A_1)$ *. Let* $L = K/\sim_\psi$ and *let L' be the ordered space obtained from L by the* ψ *-order* \lt' *defined above. Then* \langle is a consistent order on L, and every K-semi-isolated point of $K\backslash (A_0\cup A_1)$ is *also L'-semi-isolated.*

PROOF. The last statement is an immediate corollary of the definitions, so we need only to show that <' is a consistent order on $L = K/\sim_{\psi}$. By Corollary 3.1, L is T_2 . Thus the canonical mapping $\varphi : K \to L$ is closed, and so a quotient mapping. Hence it is enough to show that φ is continuous as a mapping of K onto L'. Since K_i is clopen in K, it is enough to show that $\varphi_i = \varphi \mid K_i$ is continuous, $i = 0, 1$. Since φ_0 is an order preserving mapping of K_0 onto the closed subset $(K_0 \setminus A_0) \cup \varphi(A_0)$ of L', φ_0 is continuous. We show that φ_1 is continuous. Let $K'_1 = \sum_{b=1}^{A_1} K_{1,b}$. Then $K_1 = K'_1 + K^1$, and K'_1 , K^1 are K_1 -clopen intervals. Since $\varphi_1 \big| K^{\dagger}$ is the identity, it is continuous by (7). It is left to show that φ | K' is continuous as a mapping into L'. Since both spaces are ordered spaces, it suffices to prove the following claim.

CLAIM. Let ρ be a nonzero limit ordinal, and let $\langle c_\alpha, \alpha \in \rho \rangle$ be a sequence in $K'_1 = \sum_{b=1}^{A_1} K_{1,b}$ *converging in* K'_1 to c. Then $\langle \varphi(c_\alpha), \alpha \in \rho \rangle$ *converges in L. to* $\varphi(c)$ *.*

PROOF OF CLAIM. For $d \in K'_1$ define $\delta(d)$ by the relation $d \in K_{1,\delta(d)}$. Thus, $\delta(d)$ = min([d, M_K] \cap A₁) and since A₁ is a closed set of upper isolated points, δ is a mapping of K'_1 onto A_1 . Let $b_{\alpha} = \delta(c_{\alpha})$, and distinguish two cases.

Case 0. $\langle b_{\alpha}, \alpha \in \rho \rangle$ *is eventually constant.* Let $b \in A_1$, $\gamma \in \rho$ satisfy $b_{\alpha} = b$ for $\gamma \leq \alpha < \rho$. Then $c_{\alpha} \in K_{1,b}$ for $\gamma \leq \alpha < \rho$.

Case 0.0. *b is isolated in A₁*. Then by (5) $K_{1,b}$ is a clopen interval of K_1 , φ | $K_{1,b}$ is order inverting mapping onto $\{\varphi(\psi(b))\} + (K_{1,b}^{-})^*$, which is a closed interval of L'. It is then obvious that $\langle \varphi(c_\alpha), \alpha < \rho \rangle$ converges, to $c = \varphi(c)$ if $c \neq b$, and to $\varphi(\psi(b)) = \varphi(b) = \varphi(c)$ if $c = b$.

Case 0.1. *b* is not isolated in A_1 . Then $K_{1,b} = \{b\}$, and so $c_{\alpha} = b$ and $\varphi(c_{\alpha}) = \varphi(b)$ for $\gamma \leq \alpha < \rho$. Thus $b = c$ and $\langle \varphi(c_{\alpha}), \alpha \in \rho \rangle$ converges to $\varphi(b) =$ $\varphi(c)$.

Case 1. $\langle b_{\alpha}, \alpha \in \rho \rangle$ *is not eventually constant.* By continuity of the function δ , $\langle b_{\alpha}, \alpha \in \rho \rangle$ converges to $\delta(c)$. Since A_{α} is closed and $b_{\alpha} \in A_{\alpha}$ for $\alpha \in \rho$, we conclude that $\delta(c) \in A_1$. Moreover, $\delta(c)$ is a nonisolated point of A_1 , since $\langle b_\alpha, \alpha \in \rho \rangle$ is not eventually constant. Hence $K_{\iota, \delta(c)} = {\delta(c)}$. By $c \in K_{\iota, \delta(c)}$ we have $c = \delta(c)$.

It follows from (2), (3) and (4) that if a is not isolated in $A_0, \langle a_\alpha, \alpha \in \rho \rangle$ is a sequence in A_0 converging to a, and $x_\alpha \in L_{a_\alpha}$ ($\alpha \in \rho$) then $\langle x_\alpha, \alpha < \rho \rangle$ converges in L' to $\varphi(a)$. Now let $a = \psi(c)$, $a_{\alpha} = \psi(b_{\alpha})$ and $x_{\alpha} = \varphi(c_{\alpha})$. Since $\psi | A_1$ is a homeomorphism, $\langle a_{\alpha}, \alpha \in \rho \rangle$ converges to a, and a is not isolated in A_0 . $\varphi(c_{\alpha}) = x_{\alpha} \in L_{a_{\alpha}}$ follows from $c_{\alpha} \in K_{1,b_{\alpha}}$, the definition of φ , (3) and $\varphi \psi = \varphi$, as we have:

$$
\varphi(K_{1,b_{\alpha}})=\{\varphi(b_{\alpha})\}\cup K_{1,b_{\alpha}}^{-}=\{\varphi(\psi(b_{\alpha}))\}\cup K_{1,b_{\alpha}}^{-}\subset L_{\psi(b_{\alpha})}=L_{a_{\alpha}}.
$$

Thus, $\langle \varphi(c_{\alpha}), \alpha \in \rho \rangle$ converges in L' to $\varphi(a) = \varphi(\psi(c)) = \varphi(c)$.

PROOF OF THEOREM 3. Let K be the topological sum of the respectable scattered compact T_2 -spaces K_0 and K_1 . Let K' be a T_2 -space, and let φ be an order-two mapping of K onto K'. We show that K' has an order that respects φ .

Let $K'_i = \varphi(K_i)$, $i = 0, 1$ and let $A' = K'_0 \cap K'_1$. Then K'_0, K'_1, A' are compact scattered spaces, being closed subsets of K'. Let $\varphi_i = \varphi \mid K_i, A_i = \varphi^{-1}(A') \cap K_i$. Then φ_i is an order-two mapping of K_i onto K'_i , and since φ is order-two, $\varphi_i | A_i$ is a one to one mapping of A_i onto A' . Let \lt'_{i} be an order on K'_{i} that respects φ_i (such an order exists, as K_i is respectable). Since $\varphi_i | A_i$ is one to one, each $a \in A'$ is $\leq r$ -semi-isolated, and by Proposition 4.0 we may assume that each $a \in A'$ is \leq_i -upper isolated (i = 0, 1). Let $\tilde{K_i}$ be the set $K_i' \times \{i\}$ ordered by the order \leq_i defined by $(a, i) \leq_i (b, i)$ iff $a \leq'_i b$ $(a, b \in K'_i)$. Define $\tilde{\varphi}_i : K_i \to \tilde{K}_i$ by $\tilde{\varphi}_i(k)=(\varphi(k),i)$ $(k\in K_i; i=0,1)$. Then \tilde{K}_0 , \tilde{K}_1 are disjoint SCOSs, $\tilde{A}_i=$

 $A' \times \{i\}$ is a closed subset of upper-isolated points in \tilde{K}_i , and $\tilde{\varphi}_i | A_i$ is a one to one mapping of A_i onto \tilde{A}_i . Let $\tilde{K} = \tilde{K}_0 + \tilde{K}_1$. Define $\tilde{\varphi} : K \to \tilde{K}$ by $\tilde{\varphi} \mid K_i = \tilde{\varphi}_i$, and $\Pi: \tilde{K} \to K'$ by $\Pi((b, i)) = b$ $(b \in K', i = 0, 1)$. Since \leq'_{i} is a consistent order on K'_{i} , $\Pi_{i} = \Pi | \tilde{K}_{i}$ is a homeomorphism of \tilde{K}_{i} onto K'_{i} mapping \tilde{A}_{i} onto A'. Thus, Π , $\tilde{\varphi}$ are order-two mappings, and $\varphi = \Pi \tilde{\varphi}$.

Define a reflection $\tilde{\psi}$ of \tilde{K} by $\tilde{\psi}((a, i)) = (a, 1 - i)$ for $a \in A'$, $i = 0, 1$, and $\tilde{\psi}((b, i)) = (b, i)$ for $b \in K' \backslash A'$. Then $\tilde{\psi} | \tilde{A}_0$ is a homeomorphism of \tilde{A}_0 onto \tilde{A}_1 and $\tilde{\psi}(c) = c$ for $c \in \tilde{K} \setminus (\tilde{A}_0 \cup \tilde{A}_1)$. Obviously, $\tilde{\psi} = \psi_{\text{II}}$ (see §3).

Let $L = \tilde{K}/\sim \tilde{\psi}$, and let $\tilde{\phi}$ be the canonical mapping of \tilde{K} onto L. Then we have $\tilde{\psi} = \psi_{\xi}$. Let <' denote the $\tilde{\psi}$ -order on L (see Proposition 4.2) and let L' denote L ordered by <'. By Proposition 4.2, $\tilde{\phi}$ is a mapping of \tilde{K} onto L'. Finally, define mapping Φ of K onto L' by $\Phi = \tilde{\phi}\tilde{\phi}$.

CLAIM.
$$
\varphi(x) = \varphi(y)
$$
 iff $\Phi(x) = \Phi(y)$ ($x, y \in K$).

This follows from $\varphi = \Pi \tilde{\varphi}$, $\Phi = \tilde{\varphi} \tilde{\varphi}$ and $\tilde{\psi} = \psi_{11} = \psi_{\tilde{\varphi}}$.

Let $\psi = \psi_{\varphi}$ be the reflection associated with φ . By the claim, $\psi = \psi_{\varphi}$. Define an ordering \langle on K' by $\varphi(x) \langle \varphi(y) \rangle$ iff $\Phi(x) \langle \varphi(y) \rangle$ (x, y \in K). We complete the proof by showing that \leq respects φ . \leq is a consistent order on K' since \leq ' is a consistent order on L, by Proposition 4.2. Let $k \in K$ and assume that $\varphi^{-1}(\varphi(k)) = \{k\}$. We show that $\varphi(k)$ is < -semi-isolated. By definition of <, it is enough to show that $\Phi(k)$ is <'-semi-isolated. First note that $k \notin A_0 \cup A_1$, else $\varphi(k) \in A'$ and so $\varphi^{-1}(k) \cap A_0 \neq \emptyset$ and $\varphi^{-1}(k) \cap A_1 \neq \emptyset$, whence $|\varphi^{-1}(\varphi(k))|$ > 1. Thus for some $i \in \{0, 1\}$ we have $k \in K_i \setminus A_i$, $\varphi(k) \in K_i' \setminus A'$ and $\varphi_i^{-1}(\varphi_i(k)) =$ $\{k\}$. Since $\leq i$ respects φ_i , we see that $(\varphi(k), i) \in \tilde{K}_i$ is $\leq i$ -semi-isolated, and so by the final clause of Proposition 4.2, $\Phi(k) = \tilde{\phi}((\varphi(k), i))$ is <'-semi-isolated; that is, $\Phi(k)$ is semi-isolated in L' .

REFERENCES

1. R. Arens, *Note on convergence in topology,* Math. Mag. 23 (1950), 29-234.

2. J. W. Baker, *Compact spaces homeomorphic to a ray of ordinals,* Fund. Math. 76 (1972), 19-27.

3. R. Engelking, *Outline of General Topology,* North-Holland, 1968.

4.. G. Moran, *Ordinals and scattered compact ordered spaces,* J. Geom. 17 (1981), 83-100.

5. A. Pelczinski and Z. Semadeni, *Spaces of continuous functions Ill,* Studia Math. 18 (1959), 211-222.

6. M. Rajagopalan, T. Soundararajan and D. Jakel, *On perfect images of ordinals,* in *TOPO* 72 *-- General Topology and its Applications,* Proc. 2nd Pittsburgh Intern. Conf., Lecture Notes in Math. 378, Springer, Berlin, 1974, pp. 228-232.

7. Z. Semadeni, *Banach Spaces of Continuous Functions,* Warsaw, 1971.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF HAIFA

HAIFA, ISRAEL