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ORDER-TWO CONTINUOUS HAUSDORFF
IMAGES OF COMPACT ORDINALS

BY
GADI MORAN

ABSTRACT

THEOREM. Let K be a Hausdorff space. The following conditions are equiva-
lent: (a) K is homeomorphic to a compact scattered ordered space; (b) K is an
order-two image of a compact ordinal.

§0. Introduction

The theorem stated in the abstract appears as theorem 5 in [4], where it is
shown that (a) implies (b). The purpose of this note is to establish it by showing
that (b) implies (a). As a T>-image of a compact scattered 7T.-space is again a
compact scattered T,-space ([5], lemma 1), we need the following theorem.

THEOREM 1. Let K be an order-two T,-image of a compact well ordered space
W. Then K is orderable.

Let us speil-out this statement. We call a function f: X — Y an order-two
function iff for every y € Y there are at most two solutions in X to the equation
f(x)=y. A mapping means a continuous function. If X,Y are topological spaces
and f is a mapping of X onto Y we call Y an image of X. If, in addition, Y is a
T-(Hausdorf) space we call Y a T,-image of X, and if there is an order-two
mapping of X onto Y then Y is an order-two image of X. A topological space Y
is orderable iff there is a linear ordering on Y that induces Y’s topology.

None of the assumptions of Theorem 1 can be considerably weakened. In [4] it
is shown that an order-three T.-image of a compact well-ordered space (CWOS)
need not be orderable. The most familiar nonorderable order-two-T,-image of a
compact ordered space is the circle (f(#)=e*™ is an order-two mapping of the
unit interval on the unit circle). The mentioned example in [4] is easily modified
to show that even an order-two-T:-image of a scattered compact ordered space
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(SCOS) need not be orderable. Finally compactness cannot be dismissed, as
there exist countable T,-spaces that are not orderable — for example Arens’
space ([1), see, e.g. [3], p. 109) — and every such space is a one to one image of
the (discrete) ordinal w.

We outline the argument in §1, and give the detailed proof in subsequent
sections. §3 contains a characterization of T:-order-two images of arbitrary
compact T,-spaces, in terms of properties of their associated reflections (defined
there).

A study of the structure of perfect images of CWOSs is found in [6].

§1. Outline of proof — from bottom to roof

Our notation follows [4] and otherwise [3). In particular, order means always
linear order; ma (M, ) denotes the minimal (maximal) member of the ordered set
A, whenever it exists. A* denotes the set A with its order reversed. If B, is an
ordered set for each a in the ordered set A, and B, N B, =& for a# a’, then
=2 B, denotes the ordered set obtained from U,c4 B, by retaining the given
order on each B, and requiring B, < B,-if a < a'. A point a in A is called upper
(lower) isolated iff it does not belong to the closure of {x €A :a <x}
({x €A :x<a}). a is semi-isolated if it is either upper or lower isolated. A
denotes the order-type of A. The order type of a well-ordered set is the ordinal
order-isomorphic to it. A space will mean a topological space. An order on a
space K is a consistent order (with K’s topology) if it induces K’s topology. Thus,
K is orderable iff there is a consistent order on K. Two orders on a set K are
consistent if they induce the same topology. If K’ is an ordered space obtained
from an ordered space K by replacing its order by a consistent order, we call K’
a reordering of K.

Let ¢ be a mapping of W onto K. We say that an order < on K respects ¢ iff
< is a consistent order on K, and ¢(w) is semi-isolated whenever ¢ '(¢(w)) =
{w}. A mapping ¢ of W is called respectable iff there is an order on ¢ (W) that
respects ¢. We say that W is respectable if every order-two mapping ¢ of W onto
a T»-space is respectable. Theorem 1 is a consequence of

THEOREM 2. Every CWOS is respectable.

Theorem 2 is proved by induction on the order type of the CWOS W. It is
enough to consider CWOS of type ”+m +1 (v an ordinal, m € w) as every
CWOS W is homeomorphic to a CWOS of this type ([2], lemma 3). Theorem 3
carries the induction from @’ +1to 0" -m+1=(0’ +1)-m:
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THEOREM 3. Let K, be a scattered compact T»-space, i =0, 1, and let K be the
topological sum of K, and K,. If K, and K, are respectable, so is K.

The proof is given in §4.

COROLLARY. Let W, be a scattered compact ordered space (SCOS) fori < m. If
W, is respectable, i <m, so is W =27 W,.

Theorem 2 follows from this corollary and

TueoreM 4. Let W be a CWOS, W =w"+1. If every CWOS V with
V < w®+1 is respectable, so is W.

Our proof of Theorem 4 relies on two Lemmata, whose proofs are given in §2.

LEmMMA 1. Let W be a CWOS, W=w"+1, let p =cf(w*) and let ¢ be a
mapping of W onto a T,-space satisfying ¢ (¢ (M.))={M.,}. Then there is a
reordering W' of W such that W' = w” +1, and W' = (2, W, ) +{M.}, where W,
is closed in W', and ¢ '(¢(W,)) =W, (a <p).

LEMMA 2. Let W be a CWOS such that every CWOS V with V< W is
respectable. Let W = (25 W, )+ {M.,}, where p is a limit ordinal, and W, is closed
in W. Let ¢ be an order-two-mapping of W such that ¢ (¢ (W,))= W, fora <p
(hence also ¢ '(¢(M.))={M.,}). Then ¢ is respectable.

Prooror THEOREM 4. Let ¢ be an order-two mapping of W onto a T,-space.
We have to show that ¢ is respectable. If ¢ '(¢(M,))={M.,} then ¢ is
respectable by Lemmata 1 and 2. If not, then for some w <M, we have
¢ (¢(M.))={w,M,} as ¢ is an order-two mapping. Let Wo=[m,,w], W, =
(w, M, ]. Then W = W,+ W,, where W,, W, are CWOSs, and W,< W. Let
¢=¢ | W.. Then ¢; is an order-two mapping of W, onto a T,-space, i =0, 1. By
hypothesis, ¢, is respectable. Now W, =" +1 and ¢:'(¢:(M.)={M.}=
{M..}; hence, by the previous case ¢, is also respectable. Hence, by the proof of
Theorem 3 (§4), ¢ is respectable.

§2. Proof of the Lemmata {(Milma’la ad Lemata)

Let K be an ordered set. A subset V of K is called convex subset or interval it
a,bEV and a <t<b implies t €V, i.e., (a,b)C V. For arbitrary U CK,
a,b € U,leta ~ b iff (a, b) C U. Then ~ is an equivalence relation on U, whose
equivalence classes are called the convex components of U. If U is open (closed)
then every convex component of U is open (closed). If K is compact and U is
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clopen ( = closed and open), then by compactness U has finitely many convex
components, each of which is a clopen interval in K. Thus we have

ProrosiTioON 2.0. Let K be a compact ordered space, and let U be a subset of
K. Then U is clopen iff U is a finite union of disjointed clopen intervals of K.

ProrosiTiON 2.1. Let K be a compact ordered space, and let < be its order.
Let p be an ordinal, and let A denote the set of nonzero limit ordinals not exceeding
p. Let {K,:0=a =p} be a partition of K into nonempty closed subsets. Let
m, = My, M, = Mg, Assume:

(i) K, is clopen in [m., Mx], and for a & A, K, is clopen in K.

(i) Let « € A. Then for every vy < a there is a ko< m, such that (ko, m.)C
U, zp<a Ks.

Let K' denote the set K ordered by the order relation <' defined by the
requirements:

M) <'|K.=<|K. 0=a =p),

(2) K'={(Z.K, )+ K,.

Then K’ is a reordering of K.

Proor. We need to show that the identity mapping of K onto K’ is a
homeomorphism. It is one to one and onto, so since K is compact and K’ is
Hausdorff, we only have to show continuity. Let k € K,, and let V' be a K'-
open-interval containing k. We shall show that there is a K-open-interval V
containing k such that VC V'. Let U be the K-convex-component of K,
containing k. By (i) and Proposition 2.0, U is a clopen interval of the K-closed
interval [m,, Mx] and by (1), (2) it is also a K'-closed interval, clopen in the
K'-closed interval K,.. Also, <’ I U=< | U by (1). We now distinguish two cases:

Case 0. aZ A. Then U is a K-open-interval and also a K'-open-interval.
Let V= V' U. Obviously, k € V. Since V' is also a K'-open-interval, so is V.
Thus V is a U-open-interval, hence a K-open-interval.

Case 1. a €A. If m, <k, let V=(U\{m.})N V', and repeat the previous
argument (with U \{m,} for U) to show that V is a K-open interval containing
k. Assume k =m,. Let Vo= U N V' Then k € V,, and V, is a U-open-initial-
segment contained in V'. Now V'is an open K'-interval, m, € V',and @ € A, so
there is by (2) a ¥y < « such that U, <5<« Ks C V'. Hence by (ii) there is a ko < m,
such that the K-open interval (ko, m,) is included in U, <4<« K5, hence in V',
Thus, V = (ko, m.)U V,is a K-open-interval containing m, and included in V',

Prooror LEMMA 1. Letm =mw, M =My, L = (W), = ¢(M). Then L is
T,, compact and scattered, hence zero dimensional (7, p. 168]. Thus, its clopen
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subsets form a base to the topology. Hence, whenever L,C L is closed and
I & Lo, there is a clopen L' C L such that L,C L' C L \{l}. We shall use this fact
to obtain a partition {W, : 0=« = p} of W into closed sets satisfying (i) and (ii)
of Proposition 2.1, and also ¢ (¢ (W,))= W,.

Let (a, )a<, be an increasing cofinal sequence in [m, M), and let A denote the
set of nonzero limit ordinals not greater than p. We define W, so that setting
m,=m,,M,=M,, V.= U s<a W, the following conditions hold:

(a) W, is a nonempty clopen subset of [m., M], W, is a nonempty clopen
subset of W for a €A, and W, N Wy =F for0sa <B =p.

(b) {m,max(M,, a,)]C Vo S [m, M.}, and M, <M (a <p).

(©) V. =[m,m,) for a EA.

(d) ¢ (e(W))=W. 0= =p).

(a) and (b) imply that W, = {M} and that {W, :0= a = p} is a partition of W
into closed sets. (a) guarantees (i) of Proposition 2.1; (b) and (c) guarantee (ii) (if
y <a €A then (M,.1,m,)C Va\Vyr = U, 2 Wp).

We now turn to the inductive definition of W,, V,. By definition, V,=.
Assuming W, defined for all B8 < a so that (a), (b), (¢), (d) hold, we note that V,
is bounded in [m, M) (if « € A by (b); if « € A by @ <p = cf(M)). Let y <p be
smallest such that V, < a,. Since ¢ ([m, a, ]) is closed in L and does not contain /,
we may choose L' to be a clopen subset of L satisfying ¢({m,a,])C L' C L\{l}.
Let Vou=¢ /(L") and let W, =V,,\V,. Since ¢ '(I)={M}, ¢ /(L) is
bounded in [m, M) whenever L' is a closed subset of L and /& L'. Hence V.., is
a clopen subset of W, bounded in [m, M). The verification of (a), (b), (c), (d) is
straightforward.

It is left to show that W' = w” + 1. Now W' is a CWOS, whose »’th derived set
is nonempty, as W' is homeomorphic to W. Thus, w* + 1= W’ ([2], lemma 1).
On the other hand, it is easily verified by induction that every initial segment of
W'\{M} has order-type smaller than w’, whence W'=w" +1.

PrROOF OF LEMMA 2. Let L = (W), L, = @(W,), ¢. = ¢ | W., m, =m,,,
M, =M, (a<p) Letl=¢(M,). Let A be the set of nonzero limit ordinals not
greater than p. Since W, is a CWOS and W, < W, W, is respectable for a < p,
and so since ¢, is an order-two mapping of W, onto L., L, carries an order <,
that respects ¢,. By ¢ '(L,) = W,, we have L, N L, = for a # B. Thus, the
ordering < on L defined by the requirements:

(1) <|L.=<.|L. (@ <p),

(2) L =@EL)+{1},
respects ¢, provided that it is a consistent ordering of L. Since ¢ is a closed
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function, it is a quotient mapping ([3], p. 83-85). Hence < is a consistent
ordering of L iff ¢ is continuous as a function from W into L with the order
topology. This in turn holds iff for every transfinite sequence (@u)a<r in W
convergent to a € W, (¢ (4. )).<- is convergent in the ordered space L to ¢(a).
It follows that < is a consistent ordering of L iff for every a« € A, ¢(m. ) is the
<,-first-element of L,. Hence to complete the proof it is enough to prove

CLaM. There is an ordering <, of L, that respects ., such that ¢(m,) is the
<,-first-element of L,.

Proor oF CLamM. Notice first that whenever K is an ordered space with a
maximal element and a minimal element, and k € K is semi-isolated, there is a
reordering K' of K where k is minimal, such that a point of K is semi-isolated in
K iff it is semi-isolated in K'. Indeed, if k is semi-isolated, then K = K, + K,
where K, has a maximal element (or is empty), K, has a minimal element (or is
empty) and k = My, or k = my,. In the first case let K'= K%+ K,, and in the
second let K' = K + K.

Let I, = ¢(m,) = ¢, (m.). We conclude by showing that L, has an ordering
that respects ¢, such that I, is semi-isolated. Consider two cases.

Case 0. |o7'(L)|=1. As m, € ¢ '(l,), we have in this case ¢ (L) ={m.}.
Since m, is isolated in W,, and since ¢. maps for each ordinal » the »’th
derivative WY’ of W, onto LY ([5], lemma 1), [, is isolated in L,.

Case 1. |¢7'(I)|> 1. Since ¢ is order two, [¢ '(l.)| =2 and so for some
w# m,, ¢ '(l.)={m., w}. Since ¢ '(L.)= W., we have w € W,. Now let
V = W, \{m.}. Since V < W, V is respectable. Now ¢ = ¢ | V is an order-two
mapping of V onto L., and ¢ '(l.) = {w}. Hence, there is an ordering <, of L,
that respects ¢ such that I, is semi-isolated. Obviously, <, respects also ¢.

This completes the proof of the claim, and of Lemma 2.

§3. Some reflections on T,-reflections

By a reflection of a set K we & S =(a,,0 €3) mean a permutation ¢ of K
satisfying ¢ = ¢ ', Let ¢ be an order-two function defined on K. Define the
reflection y, associated with ¢ by the requirement that the orbits of ¢, are the ¢-
inverse-images of points in ¢(K); that is, by the requirement:

¢ Np(a)={a,¢¥(a)} (a€K)

We obviously have ¢ = ¢, as ¢(a)= ¢(¢¥(a)) (a €K).
A reflection ¢ of a space K is called a To-reflection iff ¢ = ¢, for some
order-two mapping ¢ of K onto a T»-space. If K is compact, every mapping of K
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into a T,-space is closed, hence a quotient mapping ([3], p. 83-86). Thus, ¢(K)is
homeomorphic with the quotient space K/~ , where a ~b iff ¢(a)= (D).
Hence the order-two T--images of a compact space K are up to homeomorphism
the quotient spaces K/~,, where ¢ varies on all T>-reflections on K, and a ~, b
iff a=5b or a=y(b). Let CI(A) denote the closure of A CK in K. The
following theorem characterizes the T.-reflections of a compact T,-space K:

THEOREM 5. Let K be a compact Hausdorff space and let i be a reflection of K.
Then the following are equivalent:

(1) ¢ is a Tr-reflection.

(2) Whenever ACK and ClANCIW(A)=0, ¢ |C1(A) is a
homeomorphism of CI(A) onto Cl(¢(A)).

(3) If A and B are disjointed closed subsets of K, D is dense in A and ¢(D) is
dense in B, then ¢(A)= B.

The equivalence of (2) and (3) is safely left to the reader; we prove the
equivalence of (1) and (2).

(1) = (2). Let ¢ be an order-two mapping of K onto a T»-space satisfying
¥, = . We show first that ¢ (Cl(A))=Cl(y(A)). Let a ECI(A). Let S =
{(a,), 0 €3) be a net in A converging to a. Since ¢ is continuous, ¢S =
{¢(a,), o € 3) converges to ¢(a). ¢S has no other limit, since ¢{K)is T- ({3}, p.
55-56). Since K is compact, the net T = ¢S = (¥ (g, ), o € L) has a finer net T’
that converges to some b € K. Since T"is a net in ¢(A), b belongs to Ci(y(A)).
Since o = ¢, we have ¢T = oS = ¢S and so ¢T converges to ¢ (a ), hence also
the finer net T’ converges to ¢ (a). Since ¢ is continuous, ¢T' converges also to
¢(b). Since ¢(K) is T,, we conclude that ¢(b)= ¢(a). Hence b ~,a. By
a €CI(A), b € Cl(¢(A)) and CI(A)N Cl(¥(A)) = & we conclude b# a. Hence
b =4¢(a), and so ¥(a)E€ Cl(¢y(A)). Thus ¢(CI(A))C Cl(¢y(A)). Applying this
relation to ¥ (A) and using ¢° = identity we get ¢ (Cl(¢(A))C Cl(A). Applying
¢ again we obtain Cl(¢(A)) C ¢(Cl(A)) and conclude Cl(¢(A))= ¢ (CI(A)).

We show next that if A, B are disjointed closed subsets of K such that
Y(A)=DB, then . =4¢ ,A is a homeomorphism of A onto B, thereby
establishing (1) = (2). Since ¢4 is one to one and onto B, A is compact and B is
T, it is enough to show that ¢, is continuous. Let C = ¢(A)= ¢y (A) = ¢(B).
Let opa = ¢ IA, ¢ =@ |B. Since ¢s is a one to one mapping of the compact
space B onto the T space C, it is a homeomorphism, and so ¢3' is a continuous
mapping of C onto B. But obviously, ¢. = ©3'¢4, and so ¢ is continuous.

(2) = (1). Assume that (1) fails. Then K/~ is not normal. Since K is normal,
it follows that ~, is not closed ([3], p. 85, theorem 5). That is, there is a closed
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set A,C K such that A,U ¢(A,) is not closed. Since A, is closed, we
conclude that there is a net § = (b,, 0 € 3) in ¥ (Aq)\ Ao, converging to b, where
b AoU ¥(Ay). By regularity of K, we may further assume that there is a closed
neighborhood V of b such that a, € V for all 0 €2, and A,N V =J. Now let
A={¢(b,):0€3}. Then ACA, and so CI(A)CA, while
$(A)={b,:c €Z}CV and so Cl(¢y(A)CV. By A,NV= we have
CIA)N Cl(Y(A)) =D. Now consider T = ¢S = ((b,), o €Z). This is a net in
A, so by compactness there is a finer net T' converging to some a € A. But T’
is finer then ¢T = §, so it converges to b. By b A U ¢(A) we have ¢(a)# b,
and so ICI(A) is not continuous.

CoroLLARY 3.1. Let K be a compact T»-space and let A,, A\ C K be disjoint
closed subsets of K. Let i be a reflection of K such that ¢ l Ay is a homeomorphism

of A, onto A, and Y(c)=c for cEK\(AUA). Then K/~,
is Tz.

§4. Proof of Theorem 3

Let K be an ordered space, ordered by <. Let <’ be another order on K, and
let K’ denote K ordered by <'. We say that <’ respects < and that K’ is a
respectable reordering of K iff K' is a reordering of K, and for every k, k isa <-
semi-isolated point iff k is a <'-semi-isolated point.

ProPOSITION 4.0. Let K be a SCOS, and let A CK be a closed set of
semi-isolated points. Then there is a respectable reordering K' of K in which every
point of A is upper-isolated.

Notice that a closed set of upper isolated points in a compact ordered space is
well-ordered.
The proof of Proposition 4.0 depends on the following proposition.

PROPOSITION 4.1. Let & denote the class of nonzero scattered compact order
types. Then & is the smallest class of order types satisfying:

0 1e9,
(1) if p is a regular ordinal, and for each a =p, s. € ¥, then 2t €Y,
(2) if s€ ¥ then s*€S.

Obviously, the operations mentioned in (1) and (2) preserve scatteredness and
nonzero-compactness. The proof that every nonzero scattered compact ordered
type is obtained from the order type 1 by these operations is a straightforward
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induction on the characteristic and is left to the reader (see e.g. [4]; notice that
for p =1 (1) means that & is closed under sum of order types).

PROOF OF PROPOSITION 4.0. The proposition is obvious for a finite SCOS, and
clearly holds for K* whenever it holds for K. Hence, by Proposition 4.1, we
conclude by establishing:

CLaM. Let p be a regular ordinal, and let K, be a nonempty SCOS satisfying
Proposition 4.0 for every a =<p. Let K =2%" K,. Then Proposition 4.0 is true
for K.

Proor oF CLAIM. Let A C K be a closed subset of semi-isolated points. Let
A, = A N K,. By hypothesis, for every e < p there is a respectable reordering
K. of K, such that every point in A, is upper semi-isolated. As in the proof of
Lemma 2, K’ =3%"" K| is a respectable reordering of K provided that K. and
K. have the same minimal element for every nonisolated a = p.

Now, if ma, = my_ and « is nonisolated, then m,,_ is not K-lower-isolated,
hence it is K-upper-isolated. Thus, it is isolated in K., and so obviously any
respectable reordering of K is easily modified to another respectable reordering
where my, is minimal.

If, on the other hand, my, < m,_ let Ko= K’'+ K", where K' = [mg,, mas_] if
m,_ is K-upper-isolated, and K'=[mx_,ma, ) if ma, is not K-upper-isolated.
Since m., is K-semi-isolated, K' is a nonempty clopen interval of K,,. Now it is
easily checked that if Proposition 4.0 is true of a SCOS, it holds for arbitrary
clopen subset (use Proposition 2.0). Hence, K" has a respectable reordering K"
such that every point of A € K” becomes upper-isolated. Obviously, K, =
K'+ K" is then a respectable reordering of K, where each point of A, is
upper-isolated, and mx_ is minimal. This completes the proof of the claim, and
thereby proof of Proposition 4.0.

Let ¢ be a reflection of a space K, and let L = K/~,. L is formally the set of
orbits of ¥, with the quotient topology ([3], p. 83). It will be convenient in the
sequel to modify the definition and replace an orbit {c} consisting of a single
point by c.

Let K = Ko+ K, where K, and K are disjoint compact ordered spaces. Let
A; C K, be a closed subset of upper-isolated points, and let ¢ be a reflection of K
such that ¢ ,Ao is a homeomorphism of A, onto A,, and ¢(c)=c for
c EK\(A,U A)).

Let L =K/~,, and let ¢ be the canonical mapping of K onto L. By our
convention, ¢(c)=c¢ for c EK\(AoU A)).
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Let i €{0,1}. For a € A, let K;, be the largest K-interval satisfying:

(0) My, = a,

1) Ki. N A ={a}.
Since every a € A, is upper isolated, K, is a nonempty clopen K;-interval if a is
isolated in A;, and K, ={a} if a is nonisolated in A;. Let K' ={k €K;:
A, <k}. Then K' is a clopen interval in K;, and we have:

() Ki=(EiKi.)+ K.
Set Ki.= Kio\{a}. For a € A, order a subset L, of L by the requirement

(3) L. = KoatHe (@} + (Kiyw)*

Finally, let L’ denote the ordered space obtained from L by the requirement:

@ L'=EHL)+K'+K"
Denote by <’ the order of L' and call it the ¢-order.

The following properties are clear from the definition:

(5) L, is a clopen L'-interval whenever a € A, is isolated in A,.

6) L, ={@(a)} whenever a € A, is not isolated in A,.

(7) K'is aclopen interval in K; and in L', inheriting the same order from both
spaces.

ProrosiTioN 4.2. Let K = Ko+ K, where K, K, are disjoint compact ordered
spaces, let A, C K; be closed and let § be a reflection of K such that IAO isa
homeomorphism onto A, and y(c)= c forc € K\(A,U A)). Let L = K/~, and
let L’ be the ordered space obtained from L by the ys-order <' defined above. Then
<' is a consistent order on L, and every K -semi-isolated point of K\(A,U A,) is
also L'-semi-isolated.

Proor. The last statement is an immediate corollary of the definitions, so we
need only to show that <’ is a consistent order on L = K/~,. By Corollary 3.1, L
is T,. Thus the canonical mapping ¢ : K— L is closed, and so a quotient
mapping. Hence it is enough to show that ¢ is continuous as a mapping of K
onto L'. Since K is clopen in K, it is enough to show that ¢, =¢ | K; is
continuous, i =0, 1. Since ¢, is an order preserving mapping of K, onto the
closed subset (Ko\Ao)U ¢(Ao) of L', ¢o is continuous. We show that ¢, is
continuous. Let K, =3 K,,. Then K,=K;+K', and K|, K' are K;-clopen
intervals. Since ¢, l K'is the identity, it is continuous by (7). It is left to show that
@ | K is continuous as a mapping into L’. Since both spaces are ordered spaces,
it suffices to prove the following claim.

CLAIM. Let p be a nonzero limit ordinal, and let {c.,a € p) be a sequence in
K| =33 K., converging in K; to c. Then {¢(c.),a € p) convergesin L. to ¢(c).
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ProoF ofF CLaM. For d € K| define 8(d) by the relation d € K, 5. Thus,
8(d) = min([d, Mx] N A,) and since A, is a closed set of upper isolated points, &
is a mapping of K| onto A,. Let b, = 8(c.), and distinguish two cases.

Case 0. (b,,a € p) is eventually constant. Let b € A,, y € p satisfy b, = b
for y=a <p. Then c, €K, for y=a <p.

Case 0.0. b is isolated in A,. Then by (5) K, is a clopen interval of K|,
@ 'Kl‘,, is order inverting mapping onto {¢(¢ (b))} + (K1,)*, which is a closed
interval of L'. It is then obvious that (¢(c,), @ < p) converges, to ¢ = ¢(c) if
c#b,and to o (Y (b))=e(b)=¢(c)if c =b.

Case 0.1. b is not isolated in A,. Then K,, ={b}, and so ¢, =b and
¢(c.)=@(b) for y =a <p. Thus b = ¢ and (¢(c.), @ € p) converges to ¢(b)=
e(c).

Case 1. (b,,a € p) is not eventually constant. By continuity of the function
8, (b, a € p) converges to 8(c). Since A, is closed and b. € A, for a € p, we
conclude that §(c) &€ A,. Moreover, 8(c) is a nonisolated point of A, since
{b,,a € p) is not eventually constant. Hence K s.)=1{8(c)}. By ¢ € K5, we
have ¢ = 6(c).

It follows from (2), (3) and (4) that if a is not isolated in Ay, {d.,a €Ep)isa
sequence in A, converging to a, and x, € L,_ (@ € p) then {x., a <p) converges
in L' to ¢(a). Now let a = ¢(c), a. = ¢ (b.) and x. = ¢(c.). Since ¢ |A1 is a
homeomorphism, (a.,a € p) converges to a, and a is not isolated in A,.
¢(c.) = xo € L, follows from ¢, € K, the definition of ¢, (3) and ¢¥ = ¢, as
we have:

e (Kip,)={eb. )} U K1, ={e (b))} UKis, C Lypy= La,-

Thus, (¢ (c.),a € p) converges in L' to ¢(a)=¢W(c))=¢(c).

Proor ofF THEOREM 3. Let K be the topological sum of the respectable
scattered compact T,-spaces K, and K. Let K' be a T,-space, and let ¢ be an
order-two mapping of K onto K'. We show that K’ has an order that respects ¢.

Let Ki=¢(Ki), i=0,1and let A’ = K;N K. Then Ky, Ki, A’ are compact
scattered spaces, being closed subsets of K'. Let ¢; = ¢ fK, A= (A)NK.
Then ¢; is an order-two mapping of K; onto K1, and since ¢ is order-two, ¢; |Ai
is a one to one mapping of A; onto A’'. Let <} be an order on K that respects ¢
(such an order exists, as K; is respectable). Since ¢ ]A,- is one to one, each
a € A' is </-semi-isolated, and by Proposition 4.0 we may assume that each
a € A' is <i-upper isolated (i =0,1). Let K; be the set K!x {i} ordered by the
order <; defined by (a,i)<, (b,i) iff a </b (a,b € K}). Define @ : K, - K; by
@ (k)= (p(k),i) (kE€K,; i=0,1). Then K,, K, are disjoint SCOSs, A, =
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A’ x{i} is a closed subset of upper-isolated points in K, and ¢, |Ai is a one to
one mapping of A; onto A;. Let K = Ko+ K,. Define ¢ : K—>K by ¢ | Ki = ¢,
and IT: K — K’ by II((b, i)) = b (b € K}, i =0,1). Since <} is a consistent order
on Ki, II; = H'K is a homeomorphism of K; onto K! mapping A; onto A’.
Thus, II, ¢ are order-two mappings, and ¢ = I1¢§.

Define a reflection ¢ of K by §((a,i))=(a,1—i) fora€ A’, i =0,1, and
F((b,i))=(b,i)for b € K'\A". Then ¢ | A, is a homeomorphism of A, onto A,
and §(c)=c for ¢ € K\(A,U A,). Obviously, § = ¢ (see §3).

Let L = K/~;, and let ¢ be the canonical mapping of K onto L. Then we
have ¢ = ;. Let <’ denote the y-order on L (see Proposition 4.2) and let L'
denote L ordered by <. By Proposition 4.2, ¢ is a mapping of K onto L'.
Finally, define mapping ® of K onto L' by ® = ¢¢.

Ciav.  o(x)=(y) iff (x)=2(y) (x,y EK).

This follows from ¢ =I1¢, ® = ¢¢ and ¢ = ¥, = ;.

Let ¢ = ¢, be the reflection associated with ¢. By the claim, = 5. Define
an ordering < on K' by ¢(x)< ¢(y) iff ®(x)<'®(y) (x,y € K). We complete
the proof by showing that < respects ¢. < is a consistent order on K’ since <'is
a consistent order on L, by Proposition 4.2. Let k € K and assume that
¢ '(¢(k))={k}. We show that ¢(k)is < -semi-isolated. By definition of <, itis
enough to show that ®(k) is <’-semi-isolated. First note that k& AU A,, else
¢(k)E A and so ¢ (k)N Ao # D and ¢ (k)N A, # B, whence |¢ (¢ (k)| >
1. Thus for some i €{0,1} we have k € K;\A;, ¢(k)EK\A' and ¢ (¢i(k)) =
{k}. Since <! respects ¢;, we see that (¢ (k), i) € K, is <;-semi-isolated, and so by
the final clause of Proposition 4.2, ®(k)= ¢((¢(k), i)) is <'-semi-isolated; that
is, ®(k) is semi-isolated in L'.
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